
Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

785 | P a g e

 BIDIRECTIONAL INTEGRATION OF FUZZY LOGIC WITH

GENETIC ALGORITHM AND LEARNING WITH GENETIC

FUZZY SYSTEM

Riidhei Malhotra
1
, Madhu Chauhan

2,
 , Uday Pratap Singh

3
, and Mukul

Pathak
4

1
Department of Information Technology, Galgotias College of Engineering & Technology, Greater Noida (U.P.),

India
2,3,4

Department of Computer Science & Engineering, Galgotias College of Engineering &Technology, Greater

Noida(u.p), India

ABSTRACT
Recently, numerous papers and applications

combining Fuzzy Logic (FL) and Genetic

Algorithms (GAs) have become known, and there

is an increasing interest in the integration of these

two topics. In this paper we explore this

combination from the bidirectional integration:

The use of FL based techniques for both

improving GA behavior and modeling GA

components, the results obtained have been called

fuzzy genetic algorithms (FGAs), and includes

learning with genetic fuzzy systems i.e its different

approaches. An analysis of genetic fuzzy rule

based system and Genetic Tuning of Fuzzy Rule

Based Systems including Basic Models.

KEYWORDS: GENETIC ALGORITHM, FUZZY

LOGIC,LINGUISTIC VARIABLE, LEARNING

WITH GENETIC ALGORITHM, GENETIC

TUNING

1 INTRODUCTION
A Fuzzy Genetic Algorithm (FGA) is considered as a

Genetic Algorithm (GA)that uses fuzzy logic based

techniques or fuzzy tools to improve the GA behavior

modeling different GA components. An FGA may be

defined as an ordering sequence of instructions in

which some of the instructions or algorithm

components may be designed with fuzzy logic based

tools, such as, fuzzy operators and fuzzy connectives

for designing genetic operators with different

properties, fuzzy logic control systems for controlling

the GA parameters according to some performance

measures, fuzzy stop criteria, representation tasks,

etc.

1.1 GENETIC ALGORITHM (GA)

Genetic algorithms (GAs) have had a great measure

of success in search and optimization problems.

The reason for a great part of their success is their

ability to exploit the information accumulated about

an initially unknown search space in order to bias

subsequent searches into useful subspaces, i.e., their

adaptation. This is their key feature, particularly in

large, complex, and poorly understood search spaces,

where classical search tools (enumerative,

heuristic...) are inappropriate, offering a valid

approach to problems requiring efficient and

effective search techniques. GAs is general purpose

search algorithms which use principles inspired by

natural genetic populations to evolve solutions to

problems [9]. The basic idea is to maintain a

population of chromosomes, which represent

candidate solutions to the concrete problem that

evolves over time through a process of competition

and controlled variation. Each chromosome in the

population has an associated fitness to determine

which chromosomes are used to form new ones in the

competition process, which is called selection. The

new ones are created using genetic operators such as

crossover and mutation.

A GA starts off with a population of randomly

generated chromosomes, and advances toward better

chromosomes by applying genetic operators modeled

on the genetic processes occurring in nature. The

population undergoes evolution in a form of natural

selection. During successive iterations, called

generations, chromosomes in the population are rated

for their adaptation as solutions, and on the basis of

these evaluations, a new population of chromosomes

is formed using a selection mechanism and specific

genetic operators such as crossover and mutation. An

evaluation or fitness function (f) must be devised for

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

786 | P a g e

each problem to be solved. Given a particular

chromosome, a possible solution, the fitness function

returns a single numerical fitness, which is supposed

to be proportional to the utility or adaptation of the

solution represented by that chromosome.

Although there are many possible variants of the

basic GA, the fundamental underlying mechanism

consists of three operations:

1. Evaluation of individual fitness,

2. Formation of a gene pool (intermediate population)

through selection mechanism, and

3. Recombination through crossover and mutation

operators.

1.2 FUZZY LOGIC (FL)

Fuzzy logic is a form of many-valued logic; it deals

with reasoning that is approximate rather than fixed

and exact. In contrast with traditional logic theory,

where binary sets have two-valued logic: true or

false, fuzzy logic variables may have a truth

value that ranges in degree between 0 and 1. Fuzzy

logic has been extended to handle the concept of

partial truth, where the truth value may range

between completely true and completely false.

Furthermore, when linguistic variables are used,

these degrees may be managed by specific functions.

Linguistic variables

While variables in mathematics usually take

numerical values, in fuzzy logic applications, the

non-numeric linguistic variables are often used to

facilitate the expression of rules and facts. A

linguistic variable such as age may have a value such

as young or its antonym old. However, the great

utility of linguistic variables is that they can be

modified via linguistic hedges applied to primary

terms. The linguistic hedges can be associated with

certain functions.

1.3 LEARNING WITH GENETIC

ALGORITHMS

Although GAs are not learning algorithms, they may

offer a powerful and domain-independent search

method for a variety of learning tasks. In fact, there

has been a good deal of interest in using GAs for

machine learning problems([7,10,8]).Three

alternative approaches, in which GAs have been

applied to learning processes, have been proposed,

the Michigan , the Pittsburgh ([17]), and the Iterative

Rule Learning (IRL) approaches [20]. In the first one,

the chromosomes correspond to classifier rules which

are evolved as a whole, whereas in the Pittsburgh

approach, each chromosome encodes a complete set

of classifiers. In the IRL approach each chromosome

represents only one rule learning, but contrary to the

first, only the best individual is considered as the

solution, discarding the remaining chromosomes in

the population. Below , we will describe them briefly.

Michigan Approach. The chromosomes are

individual rules and a rule set is represented by the

entire population. The collection of rules is modified

over time via interaction with the environment. This

model maintains the population of classifiers with

credit assignment, rule discovery

and genetic operations applied at the level of the

individual rule. A genetic learning process based on

the Michigan approach receives the name of

Classifier System. A complete description is to be

found in [4].

Pittsburgh Approach. Each chromosome encodes a

whole rule sets. Crossover serves to provide a new

combination of rules and mutation provides new

rules. In some cases, variable-length rule bases are

used, employing modified genetic operators for

dealing with these variable-length and position

independent genomes. This model was initially

proposed by Smith in 1980 [17]. Recent instances of

this approach may be found in [10].

Iterative Rule Learning approach. In this latter

model, as in the Michigan one, each chromosome in

the population represents a single rule, but contrary to

the Michigan one, only the best individual is

considered to form part of the solution, discarding the

remaining chromosomes in the population. Therefore,

in the iterative model, the GA provides a partial

solution to the problem of learning. In order to obtain

a set of rules, which will be a true solution to the

problem, the GA has to be placed within an iterative

scheme similar to the following:

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained till now is adequate to

be a solution to the problem, the system ends up

returning the set of rules as the solution. Otherwise

return to step 1.

The main difference with respect to the Michigan

approach is that the fitness of each chromosome is

computed individually, without taking into account

cooperation with other ones. This substantially

reduces the search space, because in each sequence of

iterations only one rule is searched.

2. GENETIC FUZZY RULE BASED

SYSTEMS (GFRBS)
The idea of a Genetic FRBS is that of a genetic FRBS

design process which incorporates genetic techniques

to achieve the automatic generation or modification

of its KB (KNOWLEDGE BASE) (or a part of it).

This generation or modification usually involves a

tuning/learning process, and consequently this

http://en.wikipedia.org/wiki/Many-valued_logic
http://en.wikipedia.org/wiki/Reasoning
http://en.wiktionary.org/wiki/binary
http://en.wikipedia.org/wiki/Two-valued_logic
http://en.wikipedia.org/wiki/Truth_value
http://en.wikipedia.org/wiki/Truth_value
http://en.wikipedia.org/wiki/Linguist

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

787 | P a g e

process plays a central role in GFSs. The objective of

this tuning/learning process is optimization, i.e.,

maximizing or minimizing a certain function

representing or describing the behavior of the system.

It is possible to define two different groups of

optimization problems in FRBSs. The first group

contains those problems where optimization only

involves the behavior of the FRBS, while the second

one refers to those problems where optimization

involves the global behavior of the FRBS and an

additional system. The first group contains problems

such as modeling, classification, prediction and, in

general, identification problems. In this case, the

optimization process searches for an FRBS able to

reproduce the behavior of a certain target system. The

most representative problem in the second group is

control, where the objective is to add an FRBS to a

controlled system in order to obtain a certain overall

behavior. Next, we analyze some aspects of the

Genetic FRBSs.

2.1 Obtaining the Knowledge for an FRBS

As a first step, it is interesting to distinguish between

tuning and learning problems. In tuning problems, a

predefined RB is used and the objective is to find a

set of parameters defining the Database(DB).

In learning problems, a more elaborate process

including the modification of the Rule Base(RB) is

performed. We can distinguish between three

different groups of GFSs depending on the KB

components included in the genetic learning process.

Genetic tuning of the DB. The tuning of the scaling

functions and fuzzy membership functions is an

important task in the design of fuzzy systems. It is

possible to parameterize the scaling functions or the

membership functions and adapt them using GAs to

deal with their parameters according to a fitness

function. As regards to the tuning of membership

functions, several methods have been proposed in

order to define the DB using GAs. Each chromosome

involved in the evolution process represents different

DB definitions, i.e., each chromosome contains a

coding of the whole set of membership functions

giving meaning to the linguistic terms. Two

possibilities can be considered depending on whether

the fuzzy model nature is descriptive or approximate,

either to code the fuzzy partition maintaining a

linguistic description of the system, or to code the

rule membership functions tuning the parameters of a

label locally for every rule, thereby obtaining a fuzzy

approximate model.

Genetic learning of the RB. All the methods

belonging to this family involve the existence of a

predefined collection of fuzzy membership functions

giving meaning to the linguistic labels contained in

the rules, a DB. On this basis GAs are applied to

obtain a suitable rule base, using chromosomes that

code single rules or complete rule bases.

Genetic learning of the KB. There are many

approaches for the genetic learning of a complete KB

(RB and DB). We may find approaches presenting

variable chromosome lengths, others coding a fixed

number of rules and their membership functions,

several working with chromosomes encoding single

control rules instead of a complete KBs, etc.

3. Genetic Tuning of Fuzzy Rule Based

Systems: Basic Models
The tuning of the scaling functions and fuzzy

membership functions is an important task in the

design of fuzzy systems. It is possible to parameterize

the scaling functions or the membership functions

and adapt them using Genetic Algorithms to deal

with their parameters according to a fitness function.

As regards to the tuning of membership functions,

several methods have been proposed in order to

define the Data Base (DB) using GAs. Each

chromosome involved in the evolution process

represents different DB definitions, i.e., each

chromosome contains a coding of the whole set of

membership functions giving meaning to the

linguistic terms. Two possibilities can be considered

depending on whether the fuzzy model nature is

descriptive or approximate, either to code the fuzzy

partition maintaining a linguistic description of the

system, or to code the rule membership functions

tuning the parameters of a label locally for every rule,

thereby obtaining a fuzzy approximate model.

In this we analyze the use of GAs for the tuning of

DBs according to the two mentioned areas, the

adaptation of contexts using scaling functions and the

tuning of membership functions, we shall present

briefly them.

3.1 Adapting the Context
The use of scaling functions that are applied to the

input and output variables of an FRBS, allows us to

work with normalized universes of discourse where

the fuzzy membership functions are defined. These

scaling functions could be interpreted as gains

associated with the variables (from a control

engineering point of view) or as context information

that translates relative semantics into absolute ones

(from a knowledge engineering point of view). If

using scaling functions, it is possible to fix them or to

parameterize the scaling functions and adapt them.

Linear and non-linear contexts have been used.

Linear context. It is the simplest scaling. The

parameterized function is defined by means of two

parameters (one, if used as a scaling factor). The

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

788 | P a g e

effect of scaling is that of linearly mapping the real

interval [a,b] into a reference interval (e.g., [0,1]).

The use of a scaling factor maps the interval [-a,a] in

a symmetrical reference interval (e.g., [-1,1]). This

kind of context is the most broadly applied one.

Genetic techniques have been applied to adapting the

parameters defining the scaling factors and linear

scaling functions ([16]).

Nonlinear context. The main disadvantage of linear

scaling is the fixed relative distribution of the

membership functions (uniformly distributed or not)

once they have been generated. To solve this problem

nonlinear scaling is used allowing us to obtain a

modified relative distribution and a change in the

shape of the membership functions. The definition of

parameterized nonlinear scaling functions is more

complex than in the linear case and a larger number

of parameters are needed. The process actually

requires two steps: previous scaling (linear) and

nonlinear mapping. Parameterized potential and sig

modal ([11]) functions have been used when applying

Gas to adapt the nonlinear context. Usually, the

parameters (real numbers) constitute the genes of the

chromosomes without binary representation.

Figure 3.1 shows a normalized fuzzy partition (top), a

nonlinear adaptation with lower granularity for

middle or for extreme values (center) and lower

granularity for lowest or for highest

Values (bottom).

3.2 Tuning the Membership Functions

Another element of the KB is the set of membership

functions. This is a second point where Gas could be

applied with a tuning purpose. As in the previous

case of scaling functions, the main idea is the

definition of parameterized functions and the

subsequent adaptation of parameters. Some

approaches are found to be in [1, 12, 14]. The

different proposals differ in the coding scheme and

the management of the solutions (fitness functions,)

3.2.1 Shape of the Membership Functions

Two main groups of parameterized membership

functions have been proposed and applied: piecewise

linear functions and differentiable functions.

Fig 3.1: Non Linear Contexts Adaptation

Fig 3.2: Descriptive Versus Approximate Fuzzy

Models

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

789 | P a g e

Piecewise linear functions. The most broadly used

parameterized membership functions in the field of

GFSs are triangles, in some cases these are isosceles

and other times they are irregular. A second

possibility is trapezoidal membership functions. Each

parameter of the function constitutes a gene of the

chromosome that may be a binary code representing

the parameter or a real number (the parameter itself,).

Gaussian, bell and sigmoidal are examples of

parameterized differentiable functions.

3.2. Scope of the Semantics

The genetic tuning process of membership functions

is based on two variants, depending on the fuzzy

model nature, whether approximate ([12]) or

descriptive (5, 14]). The descriptive fuzzy model is

essentially a qualitative expression of the system. A

KB in which the fuzzy sets giving meaning

(semantic) to the linguistic labels are uniformly

defined for all rules included in the RB. It constitutes

a descriptive approach since the linguistic labels take

the same meaning for all the fuzzy rules contained in

the RB. Concluding Remarks 27 In the approximate

fuzzy model a KB is considered for which each fuzzy

rule presents its own meaning, i. e., the linguistic

variables involved in the rules do not take as their

values any linguistic label from a global term set. In

this case, the linguistic variables become fuzzy

variables. The system applies local semantics. Figure

3.2 and the examples described in the following

paragraphs illustrate these two variants, and their

particular aspects reflected in the coding scheme.

3.2.3 The Approximate Genetic Tuning Process

As mentioned earlier, each chromosome forming the

genetic population will encode a complete KB. More

concretely, all of them encode the RB, R, and the

difference between them is the fuzzy rule

membership functions, i. e., the DB definition.

Taking into account a parametric representation with

triangular-shaped membership functions based on a

3-tuple of real values, each rule Ri : IF x1 is Ai1 and

... and xn is Ain THEN y is Bi, of a certain KB

(KBl), is encoded in a piece of chromosome Cli: Cli

= (ai1; bi1; ci1; : : : ; ain; bin; cin; ai; bi; ci) where

Aij , Bi have the parametric representation (aij ; bij ;

cij), (ai; bi; ci), i = 1; : : : ;m (m represents the

number of rules), j = 1; : : : ; n (n is the number of

input variables). Therefore the complete RB with its

associated DB is represented by a complete

chromosomeCl: Cl = Cl1 Cl2 ::: Clm .This

chromosome may be a binary or a real coded

individual.

3.2.4 The Descriptive Genetic Tuning Process

In this second genetic tuning process each

chromosome encodes a different DB definition based

on the fuzzy domain partitions. A primary fuzzy

partition is represented as an array composed by 3 _

N real values, with N being the number of terms

forming the linguistic variable term set. The complete

DB for a problem, in which m linguistic variables are

involved, is encoded into a fixed length real coded

chromosome Cj built up by joining the partial

representations of each one of the variable fuzzy

partitions,

Cji = (ai1; bi1; ci1; : : : ; aiNi ; biNi ; ciNi)

Cj = Cj1 Cj2 ::: Cjm

where Cji represents the fuzzy partition

corresponding to the i � th variable.

4. Learning with Genetic Fuzzy Systems:

Pittsburgh Approach

4.1 Introduction

Recently, there has been a growing interest in using

Genetic Algorithms (GAs) for machine learning

problems, appearing different genetic learning

approaches. One of them, the Pittsburgh approach

adopts the view that each individual in a population,

each chromosome, encodes a whole rule sets.

Crossover serves to provide a new combination of

rules and mutation provides new rules. In some cases,

variable-length rule bases are used, employing

modified genetic operators for dealing with these

variable-length and position independent genomes.

This model was initially proposed by Smith in 1980

[17]. Here, we shortly describe the use of Genetic

Fuzzy Systems (GFSs) with this learning approach

for learning Rule Bases (RB) and Knowledge Bases

(KB) for Fuzzy Rule Bases Systems (FRBSs).

4.2 Genetic Learning of RB

It is possible to represent the RB of an FRBS with

three different representations. These representations

are: relational matrix, decision table and list or set of

rules. The Pittsburgh approach has been applied to

learn rule bases in two different situations. The first

situation refers to those systems using a complete

rule base represented by means of a decision table or

a relational matrix. The second situation is that of

FRBSs, whose RB is represented using a list or set of

fuzzy rules.

4.2.1 Using a Complete RB

A tabular representation guarantees the completeness

of the knowledge of the FRBS in the sense that the

coverage of the input space (the Cartesian product of

universes of the input variables) is only related to the

level of coverage of each input variable (the

corresponding fuzzy partitions), and not to the rules.

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

790 | P a g e

Decision tables. A possible representation for the RB

of an FS is a decision table. It is a classical

representation used in different GFSs. A chromosome

is obtained from the decision table by going row-wise

and coding each output fuzzy set as an integer or any

other kind of label. It is possible to include the ―no

output‖ definition in a certain position, using a ―null‖

label ([18]).

Relational matrices. Occasionally GAs are used to

modify the fuzzy relational matrix (R) of a Fuzzy

System with one input and one output. The

chromosome is obtained by concatenating the m _ n

elements of R, where m and n are the number of

fuzzy sets associated with the input and output

variables respectively. The elements of R that will

make up the genes may be represented by binary

codes or real numbers.

4.2.2 Using a Partial RB

Neither the relational nor the tabular representations

are adaptable to systems with more than two or three

input variables because of the dimension of a

complete RB for these situations. This fact stimulated

the idea of working with sets of rules. In a set of rules

representation the absence of applicable rules for a

certain input that was perfectly covered by the fuzzy

partitions of individual input variables is possible. As

a counterpart to the loss of completeness, this

representation allows compressing several rules with

identical outputs into a singular rule and this is a

really important question as the dimension of the

system grows. There are many different methods for

coding the rule base in this kind of evolutionary

system. The code of the rule base is usually obtained

by concatenating rules codes.

Rules of fixed length. A first approach is to

represent a rule with a code of fixed length and

position dependent meaning. The code will have as

many elements as the number of variables in the

system. A possible content of these elements is: a

label pointing to a certain fuzzy set in the fuzzy

partition of the variable or a binary string with a bit

per fuzzy set in the fuzzy partition of the variable

coding the presence or absence of the fuzzy set in the

rule [15].

Rules of variable length. Codes with position

independent meaning and based on pairs {variable,

membership function} (the membership functions is

described using a label) are used in .

4.3 Genetic Learning of KB

The simultaneous use as genetic material of the DB

and the RB of an FRBS has produced different and

interesting results. The most general approach is the

use of a set of parameterized membership functions

and a list of fuzzy rules that are jointly coded to

generate a chromosome, then applying a Pittsburgh-

type GA to evolve a population of such

chromosomes. This kind of GFSs use chromosomes

Containing two sub-chromosomes that encode

separately, but not independently, the DB and the

RB. It is possible to maintain, at this point, the same

division that was stated when talking about genetic

learning of RBs with a Pittsburgh approach: learning

complete rule bases or partial rule bases.

4.3.1 Using a Complete RB

In the rule base is represented as a fuzzy relation

matrix (R), and the GA modifies R or the fuzzy

membership functions (triangular) or both of them

simultaneously, on a Fuzzy Logic Controller (FLC)

with one input and one output variables. Each gene is

a real number. When generating the optimal fuzzy

relation matrix this real number corresponds to a

fuzzy relation degree whose value is between 0 and

1. The genetic string is obtained by concatenating the

m _ n real numbers that constitute R. When finding

simultaneously the optimal rule base and the fuzzy

membership functions, each chromosome allocates

two sub-chromosomes: the genes of the rule base and

the genes of the fuzzy membership functions. Both

sub-chromosomes are treated as independent entities

as far as crossover and mutation are concerned but as

a single entity as far as reproduction is concerned. A

slightly different approach is to use a TSK-type rule

base, structuring its genetic code as if it came from a

decision table. In this case, the contents of the code

of a rule base is an ordered and complete list

containing the consequents of all possible rules,

where the antecedents are implicitly defined as a

function of the position the consequent occupies in

the list. The fuzzy membership functions constitute a

first sub-chromosome while the coefficients of the

consequents for a TSK fuzzy model constitute the

second sub-chromosome. One gene is used to code

each coefficient of a TSK-type, a single coefficient

is considered for the output.

4.3.2 Using a Partial RB

Liska and Melsheimer use a rule base defined as a

set of a fixed number of rules, and code each rule

with integer numbers that define the membership

function related with a certain input or output

variable that is applied by the rule (membership

functions for every variable are ordered). The

systems use radial membership functions coded

through two real numbers (two genes). The genetic

string is obtained by concatenating the two genes in

each membership function. There are many different

methods for coding the rule base in this kind of

evolutionary system. The code of the rule base is

usually obtained by concatenating rule codes. To

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

791 | P a g e

represent a single rule, it is possible to use a position

dependent code with as many elements as the number

of variables of the system. A possible content in these

elements is: a label pointing to a certain fuzzy set in

the fuzzy partition of the variable or a binary string

with a bit per fuzzy set in the fuzzy partition of the

variable. Using an approximate approach, include the

definition of the membership functions into the rules,

coding each rule through the corresponding set of

membership functions.

5. Learning with Genetic Fuzzy Systems:

Iterative Rule Learning Approach

5.1 Introduction

Since the beginning of the 80s there has been

growing interest in applying methods based on

Genetic Algorithms (GAs) to automatic learning

problems, especially the learning of production rules

on the basis of attribute-evaluated example sets. The

main problem in these applications consists of

finding a "comfortable" representation in the sense

that it might be capable both of gathering the

problem’s characteristics and representing the

potential solutions. In recent literature we may find

different algorithms that use a new learning model

based on GAs, the Iterative Rule Learning (IRL)

approach [20]. In the latter model, as in the Michigan

one, each chromosome in the population represents a

single rule, but contrary to the latter, only the best

individual is considered as the solution, discarding

the remaining chromosomes in the population. This

model has been used in papers such as [20, 13].

5.2 IRL Approach

In this approach the GA provides a partial solution to

the problem of learning, and attempts to reduce the

search space for the possible solutions. In order to

obtain a set of rules, which will be a true solution to

the problem, the GA has to be placed within an

iterative scheme similar to the following:

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained is adequate to represent

the examples in the training set, the system ends up

returning the set of rules as the solution. Otherwise

return to step 1.

A very easy way to penalize the rules already

obtained, and thus be able to learn new rules, consists

of eliminating from the training set all those

examples that are covered by the set of rules obtained

previously. This learning way is to allow "niches"

and "species" formation. Species formation seems

particularly appealing for concept learning,

considering the process as the learning of multimodal

Concepts. The main difference with respect to the

Michigan approach is that the fitness of each

chromosome is computed individually, without

taking into account cooperation with other ones. This

Reduces substantially the search space, because in

each sequence of iterations only one rule is searched.

In the literature we can find some genetic learning

processes that use this model such as SLAVE, SIAVE

[20] and the genetic generation process. These three

genetic learning processes use the IRL approach with

light difference: SLAVE launches a new GA to find a

new rule after having eliminated the examples

covered by the last rule obtained. SLAVE was

designed to work with or without linguistic

information .SIAVE uses a single GA that goes on

detecting rules and eliminating the examples covered

by the latter. SIA can only work with crisp data. The

genetic generation process runs a GA for obtaining

the best rule according to different features, assigns a

relative covering value to every example, and

removes the examples with a covering value greater

than a constant.

From the description above, we may see that in order

to implement learning algorithm based on GAs using

the IRL approach, we need, at least, the following:

1. A criterion for selecting the best rule in each

iteration,

2. A penalty criterion, and

3. A criterion for determining when enough rules are

available to represent the examples in the training set.

The first criterion is normally associated with one or

several characteristics that are desirable so as to

determine good rules. Usually criteria about the rule

strength have been proposed (number of examples

covered), criteria of consistency of the rule or criteria

of simplicity.

The second criterion is often associated, although it is

not necessary, with the elimination of the examples

covered by the previous rules.

Finally, the third criterion is associated with the

completeness of the set of rules and must be taken

into account when we can say that all the examples in

the training set are sufficiently covered and no more

rules are needed to represent them.

5.2.1 Multi-Stage Genetic Fuzzy System Based on

the IRL Approach

Learning algorithms that use the IRL approach do not

envisage any relationship between them in the

process for obtaining rules. Therefore, the final set of

rules usually needs an a posteriori process that will

modify and/or fit the said set. The methodology that

is presently applied includes different processes that

are not necessarily applied simultaneously. This

methodology, which we call multi-stage genetic fuzzy

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

792 | P a g e

systems and has been abbreviated as MSGFS,

consists of three component parts:

I A genetic generation stage for generating fuzzy

rules using the IRL approach.

II A post-processing stage working on the rule set

obtained in the previous stage in order to either to

refine rules or eliminate redundant rules.

III A genetic tuning stage that tunes the membership

functions of the fuzzy rules.

We describe these shortly below.

Genetic generation stage. In this stage the IRL

approach is used for learning fuzzy rules capable of

including the complete knowledge from the set of

examples. A chromosome represents a fuzzy rule, the

generation method selects the best rule according to

different features included in the fitness function of

the GA, features that include general properties of the

KB and particular requirements to the fuzzy rule.

This features lead to the definition of the covering

degree between a rule and an example and the use of

the concept of positive and negative examples. The

IRL approach uses a covering method of the set of

examples. This covering method assigns a relative

covering value to every example, and removes the

examples with an adequate covering value, according

to a covering criterion. As we have indicated, this

model may be used for learning RB as SLAVE and

for learning KB as the genetic generation process

proposed in [13].

Post-processing stage: selection and refinement.

As we mentioned earlier, the IRL approach does not

analyze any relationship between the rules that it is

obtaining. That is why, once the rule base has been

obtained, it may be improved either because there are

rules that may be refined or redundant rules if high

degrees of coverage are used. Two possible post-

processing methods have been used , a refinement

algorithm and a selection or simplification algorithm

[12].

Genetic tuning stage. At this stage the genetic

tuning process is applied over the KB for obtaining a

more accurate one. We can consider two possibilities,

depending on the fuzzy model’s nature:

a) an approximate model based on a KB composed of

a collection of fuzzy rules without a fixed

relationship between the fuzzy rules and some

primary fuzzy partitions giving meaning to them, or

b) a descriptive model based on a linguistic

description of the system with a fuzzy partition that

assigns a membership function to every linguistic

label. In both cases, each chromosome forming the

genetic population will encode a complete DB, but in

the first case each piece of chromosome codes the

membership functions associated to one rule and in

the second one each piece of chromosome codes the

fuzzy partition of a variable. The main difference

between both processes is the coding scheme.

5.2.2 A Multi-stage Genetic Fuzzy Rule-Based

System Structure

In the following we present a guideline structure for

multi-stage GFRBSs used in [13]:

a) A Fuzzy Rule Generation Process. This process

will determine the type of the final FRBS generated,

so the generated fuzzy rules may present a

descriptive, constrained approximate or

unconstrained approximate semantics. In all cases, it

will present two components: a fuzzy rule generating

method composed of an inductive or evolutionary

process which uses a niche criterion for obtaining the

best possible cooperation among the fuzzy rules

generated when working with the approximate

approach, and an iterative covering method of the

system behavior example set, which penalizes each

rule generated by the fuzzy rule generating method

by considering its covering over the examples in the

training set and removes the ones yet covered from it.

This process allows us to obtain a set of fuzzy rules

with a concrete semantics covering the training set in

an adequate form.

b) A Genetic Multi-Simplification Process for

selecting rules, based on a binary coded GA with a

phenotypic sharing function and a measure of the

FRBS accuracy in the problem being solved. It will

save the overlearning that the previous component

may cause due to the existence of redundant rules,

with the aim of obtaining a simplified KB presenting

the best possible cooperation among the fuzzy rules

composing it. This process will obtain different

possibilities for this simplified KB thanks to a

genotypic niching scheme.

c) An Evolutionary Tuning Process based on any

kind of real coded EA and a measure of the FRBS

performance. It will give the final KB as output by

adjusting the membership functions for each fuzzy

rule in each possible KB obtained from the genetic

multi-simplification process. The type of tuning

performed will depend on the nature of the FRBS

being generated, i.e., when generating a descriptive

FRBS, a global tuning of the fuzzy partition

associated to each linguistic variable will be

performed, but when working with any of the

approximate approaches, the membership functions

involved in each fuzzy rule will be adjusted. The

most accurate KB obtained in this stage will

constitute the final output of the whole learning

process

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

793 | P a g e

6. Learning with Genetic fuzzy system:

Michigan Approach

6.1 INTRODUCTION

While classifier systems of the Michigan type had

been introduced by J. H. Holland in 1976, their

fuzzification awaited discovery many years. The first

fuzzy classifier system of the Michigan type was

introduced by M. Valenzuela-Rendón ([19]) and is,

more or less, a straightforward fuzzification of a

Holland classifier system. An alternative approach

has been developed by A. Bonarini ([2, 3]), who

applies a different scheme of competetion between

classifiers. These two approaches have in common

that they operate only on the rules — the shape of the

membership functions is fixed. A third method,

which was introduced by P. Bonelli and A. Parodi,

tries to optimize even the membership functions and

the output weights in accordance to payoff from the

environment.

6.2 Fuzzifying Holland Classifier Systems

6.2.1 The Production System

We consider a fuzzy controller with real-valued input

and output. The system has, unlike ordinary fuzzy

controllers, three different types of variables — input,

output, and internal variables. As we will see later,

internal variables are for the purpose of storing

information about the near past. They correspond to

the internally tagged messages in Holland classifier

systems. For the sake of generality and simplicity, all

the universes of discourse, are transformed to the unit

interval [0; 1]. For each variable the same number of

membership functions n is assumed. These

membership functions are fixed at the beginning.

They are not changed throughout the learning

process. M. Valenzuela-Rendón took bell-shaped

function which divided the interval rather equally. A

message is a binary string of length l + n, where n is

the number of membership functions defined above

and l is the length of the prefix (tag), which identifies

the variable to which the message belongs. A good

choice for l would be dlog2 Ke, where K is the total

number of variables we want to consider. To each

message an activity level, which represents a truth

value, is assigned.

Consider for instance the following message (l = 3, n

= 5): |0{1z0}=2: 00010 ! 0:6

Its meaning is ―Input no. 2 belongs to fuzzy set no. 4

with a degree of 0:6‖. On the message list only so-

called minimal messages are used, i.e., messages with

only one 1 in the part which identifies the numbers of

the fuzzy sets. Classifiers again consist of a fixed

number r of conditions and an action part. Note that,

in this approach, no wildcards and no ―–‖ prefixes are

used. Both condition and action part are also binary

strings of length l +n, where the tag and the

identifiers of the fuzzy sets are separated by a colon.

Then the degree to which such a condition is matched

is a truth value between 0 and 1. The degree of

matching is computed as the maximal activity of

messages on the list, which have the same tag and

whose 1s are a subset of those of the condition.

Figure 6.1 shows a simple example how this

matching is done. The degree of satisfaction of the

whole classifier is then computed as the minimum of

matching degrees of the conditions. This is then also

the activity level which is assigned to the output

message (i.e., Mamdani inference).

Fig6.1: Matching a fuzzy condition

The whole rule base consists of a fixed number m of

such classifiers. Similarly to Holland classifier

systems, one execution step of the production system

is done as follows:

1. The detectors receive crisp input values from the

environment and translate them into minimal

messages which are then added to the message list.

2. The degrees of matching are computed for all

classifiers.

3. The message list is erased.

4. The output messages of some matched classifiers

are placed on the message list.

5. The output messages are translated into minimal

messages. For instance, the message 010 : 00110 !

0:9 is split into the two messages 010 : 00010 ! 0:9

and 010 : 00100 ! 0:9.

6. The effectors discard the output messages

(referring to output variables) from the list and

translate them into instructions to the environment.

From point 2 it can be seen easily that it is of

advantage to use fuzzy sets with local support instead

of bell-shaped ones, because, if bell-shaped fuzzy

sets are used, every rule fires in each time step.

Step 6 is done by a modified Mamdani inference: The

sum (instead of the maximum or another t-conorm)

of activity levels of messages, which refer to the

same fuzzy set of a variable, is computed. The

membership functions are then scaled with these

sums. Finally, the center of gravity of the ―union‖

(i.e. maximum) of these functions, which belong to

one variable, is computed (Sum-Prod inference).

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

794 | P a g e

6.2.2 Rule Discovery

The adaptation of a genetic algorithm to the problem

of manipulating classifiers in our system is again

straightforward. We only have to take special care

that tags in conditional parts must not refer to output

variables and that tags in the action parts of the

classifiers must not refer to input variables of the

system. Analogously to our previous considerations,

if we admit a certain number of internal variables, the

system tends to build up internal chains, coupled

sequences, autonomously. If we admit internal

variables, a classifier system of this type not only

learns stupid input-output actions, it also tries to

discover causal interrelations.

6.3 Bonarini’s ELF Method

In [2], A. Bonarini presents his ELF (=evolutionary

learning of fuzzy rules) method and applies it to the

problem of guiding an autonomous robot. The key

issue of ELF is to find a small rule base which only

contains important rules. While he takes over many

of M. Valenzuela-Rendón’s ideas, his way of

modifying the rule base differs strongly from

Valenzuela-Rendón’s straightforward fuzzification of

Holland’s technique. Bonarini calls the modification

scheme ―cover-detector algorithm‖. The number of

rules can be varied in each time step depending on

the number of rules which match the actual situation.

This is done by two mutually exclusive operations:

1. If the rules, which match the actual situation, are

too many, the worst of them is deleted.

2. If there are too few rules matching the current

inputs, a new rule, whose antecedents cover the

current state, with randomly chosen consequent

value, is added to the rule base.

The genetic operations are only applied to the

consequent values of the rules. Since the antecedents

are generated on demand in the different time steps,

no taxation is necessary.

Seemingly, such a simple modification scheme can

only be applied to so-called one-stage problems,

where the effect of each rule can be observed in the

next time step. For applications where this is not

valid, e.g., backing up a truck, Bonarini introduced a

modification of his ELF algorithm — the concept of

an episode, which is a given number of subsequent

control actions, after which they reached state is

evaluated.

6.4 Online Modification of the Whole Knowledge

Base

While the last two methods only manipulate rules and

work with fixed membership functions, there is at

least one variant of fuzzy classifier systems were also

the membership functions are involved in the

learning process. This variant was introduced by A.

Parodi and P. Bonelli in [65]. The main idea is that an

approximate knowledge base is used instead of a

descriptive one as in the two previous examples. So,

a fuzzy rule is not represented as a linguistic

expression which refers only to labels of fuzzy sets,

but a fuzzy relation on X_Y , where X is the input

and Y is the output domain. More specifically, each

rule is represented as a pair consisting of a fuzzy

subset of X and a fuzzy subset of Y .Since, in many

applications, X and Y are themselves cross products,

i.e., X = X1__ _ __Xn and Y = Y1 _ _ _ _ _ Ym,

rules in a approximative knowledge base can be

written as Ai1 _ _ _ _ _ Ain _ Bi1 _ _ _ _ _ Bim .

Where i is the index of the rule. If one restricts to

certain class of fuzzy subsets, such as triangular or

bell-shaped membership functions, it is possible to

encode a rule as (ai1; : : : ; ain; bi1; : : : ; bim)

where aij and bij are parameters uniquely identifying

a fuzzy subset of Xj or Yj , respectively. Moreover,

in this approach, each rule is additionally equipped

with a strength factor, which is taken as a scaling

factor of the output set. This strength factor is also

used as fitness measure by the genetic algorithm

which modifies the knowledge base and modified

according to payoff from the environment.

7. Conclusion
One of the most important advantages of fuzzy

systems is that the functions are parameterized in a

way which is interpretable for humans. More

specifically, it is possible to translate human

knowledge into fuzzy rules and fuzzy sets, but, on the

contrary, not every system, which is formally a fuzzy

system, is really interpretable. In fact, the probability,

that difficultly interpretable configurations are

obtained, is rather high when representations with

lots of degrees of freedom are tried to be optimized.

An alternative, which can help to overcome this

problem, is to encode whole fuzzy partitions as

shown in the fifth lecture. Obviously, this approach

allows less degree of freedom, which can also speed

up convergence.

There have been a lot of publications concerning with

genetic optimization of fuzzy systems (see [6] for

recent bibliographies). Each of these approaches —

many of them are rather similar—has only been

applied to a few benchmark problems. So far, there

are no proofs (neither theoretical nor empirical)

which methods are suitable for which problems.

8.REFERENCES
[1] F. Bolata and A. Nowé. From fuzzy linguistic

specifications to fuzzy controllers using evolution

strategies. In Proc. FUZZ-IEEE’95, volume III, pages

1089–1094, 1995.

Riidhei Malhotra, Madhu Chauhan, Uday Pratap Singh, and Mukul Pathak/ International Journal

of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.785-795

795 | P a g e

[2] A. Bonarini. ELF: Learning incomplete fuzzy rule sets for

an autonomous robot. In Proc. EUFIT’93, volume I,

pages 69–75, 1993.

[3] A. Bonarini. Evolutionary learning of fuzzy rules:

Competition and cooperation. In W. Pedrycz, editor,

Fuzzy Modeling: Paradigms and Practice, pages 265–

283. Kluwer Academic

Publishers, Dordrecht, 1996.

[4] L. B. Booker, D. E. Goldberg, and J. H. Holland.

Classifier systems and genetic algorithms.Artificial

Intelligence, 40:235–282, 1989.

[5] O. Cordón, F. Herrera, and M. Lozano. A three-stage

method for designing genetic fuzzy

systems by learning from examples. In H. M. Voight, W.

Ebeling, I. Rechenberg, and H. P.

Schwefel, editors, Proc. Int. Conf. on Parallel Problem

Solving from Nature, pages 720–729,

Berlin, 1994.

[6] O. Cordón, F. Herrera, and M. Lozano. A classified

review on the combination

fuzzy logic–genetic algorithms. Technical Report

DECSAI-95129, Dept. of Computer

Science and AI, University of Granada, Spain, December

1995. Available at

http://decsai.ugr.es/_herrera/fl-ga.html

[7] K. A. De Jong. Learning with genetic algorithms: An

overview. Mach. Learn., 3:121–138,1988.

[8] A. Giordana and F. Neri. Genetic algorithms in machine

learning. AI Communications, 9:21–26, 1994.

[9] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning.

Addison-Wesley, Reading, MA, 1989.

[10] J. J. Grefenstette, editor. Genetic Algorithms for Machine

Learning. Kluwer Academic Publishers, Boston, 1995.

[11] R. R. Gudwin, F. Gomide, and W. Pedrycz. Nonlinear

context adaptation with genetic algorithms. In Proc.

IFSA’97, 1997.

[12] F. Herrera, M. Lozano, and J. L. Verdegay. Tuning fuzzy

logic controllers by genetic algorithms. Internat. J.

Approx. Reason., 12:299–315, 1995.

[13] F. Herrera, M. Lozano, and J. L. Verdegay. A learning

process for fuzzy control rules using

genetic algorithms. Fuzzy Sets and Systems, 1997. to

appear???????????

[14] C. L. Karr. Genetic algorithms for fuzzy controllers. AI

Expert, 6(2):26–33, 1991.

[15] L. Magdalena. Adapting the gain of an FLC with genetic

algorithms. Internat. J. Approx.

Reason., 17(4):327–350, 1997.

[16] L. Magdalena and F. Monasterio. Evolutionary-based

learning applied to fuzzy controllers. In Proc. FUZZ-

IEEE’95, volume III, pages 1111–1118, 1995

[17] S. F. Smith. A Learning System Based on Genetic

Adaptive Algorithms. PhD thesis, Universityof

Pittsburgh, 1980.

[18] P. Thrift. Fuzzy logic synthesis with genetic algorithms.

In R. K. Belew and L. B. Booker, editors, Proc.

ICGA’91, pages 509–513, Los Altos, CA, 1991. Morgan

Kaufmann.

[20] M. Valenzuela-Rendón. The fuzzy classifier system: A

classifier system for continuously

varying variables. In R. K. Belew and L. B. Booker,

editors, Proc. ICGA’91, pages 346–353,

San Mateo, CA, 1991. Morgan Kaufmann.

[19] G. Venturini. SIA: A supervised inductive algorithm with

genetic search for learning

attribute-based concepts. In Proc. European Conf. on

Machine Learning, pages 280–296, 1993.

http://decsai.ugr.es/_herrera/fl-ga.html

