
GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

697 | P a g e

A new modular Authentication and Authorization architecture for web

portals and content management systems

GholamAli Nejad HajAli Irani
Faculty of Engineering, University of Bonab, Bonab, Iran

ABSTRACT

All web based Information Systems such as web portals

and content managements systems (CMS) need an

Authentication and Authorization (AA) architecture.

More than 1200 web portals and content management

systems have been developed as yet. Existing portals and

CMS use a similar centralized approach that gather all

similar parts of system in a common part which is

named Core. So with increasing the scale of system,

scale of the Core will increase as well.

In centralized approach, all functionalities of AA

perform by Core. With increasing scale of system, this

architecture will be faced with many problems.

In this paper, a new decentralized architecture has

provided for AA in web portals and content

management systems. To obtain this aim, firstly, all

existing approaches and their disadvantages for AA, has

been investigated and categorized. Secondly, to obtain a

new architecture and solving disadvantages of existing

approaches, new AA principles has been developed

using robust object oriented principles and heuristics.

New architecture has been developed based on these

obtained AA principles.

Finally, for evaluation of new architecture, it has been

shown that all requirements of existing approaches

covers by new architecture.

Keywords - Modular Software Architecture,

Authentication and Authorization, Object Oriented

Analysis and Design, CMS

I. INTRODUCTION
Authentication is the process of confirming someone or

something's identity [4]. It can be considered as giving

answer to this question: Are they the ones who they say?

Authorization is the process of allowing someone or

something to actually do something [4]. Can they do this?

CMS and web portals as web based information system are

composed of several modules [16]. More than 1200 web

portal and CMS is presented in web applications [17]. For

example, Drupal is composed of more than 8700 modules

[18].

Every information system must have authentication and

authorization part to perform and apply security features of

each part of system. All existing web portals and CMS have

used a centralized approach. In centralized approach all

similar functionalities of system have been collected and

gathered in a common part of system which is named Core.

AA of any system, at the first glance, is look at similar

functionalities. Therefore in existing architectures all

functionalities of AA perform by the Core.

As increasing the scale and complexity of system, scale and

complexity of Core is increasing as well. Then management

of Core is turned to a big problem. On the other hand, while

extending and modifying the Core, all modules might

change. Therefore as increasing scale of Core, the Core can

turn a GOD module [1].

There are many patterns of Authentication and

Authorization of systems which are described in part 1 and

each day is added to the number and variety of them. So

with putting all these patterns into Core, the dependency of

modules to Core is increased and modularity of whole

system is decreased. Centralized approach has some other

disadvantages which are described in part 2.

Our suggested architecture for modular CMS and web

portals is presented in Fig. 1. The main difference of our

suggested architecture in comparison with other existing

architectures is usage of robust object oriented principles

and heuristics in designing “Core Functionalities” and its

communications with other modules. Based on suggested

architecture all modules have to control their contents by

themselves and Core just prepares an infrastructure for that.

In this architecture, all authorization functionality of each

module, granted to itself. Meanwhile, authentication

functionality performed by Core.

To support maximum extensibility and modifiability for

communication between Core and modules, we used event-

driven architecture [13]. To support various implementation

platforms and maximum compatibility we used XML as

communication protocol [14].

The aim of this paper is to provide a new architecture for

AA in web portals and CMS which can be apply as a

standard for AA in any Modular IS. New method is based

on decentralized approach and tries to distribute the AA

functionalities between modules.

To obtain this aim, Firstly, previous architectures and

patterns of AA have been investigated. Secondly,

disadvantages of centralized approaches have been

investigated. Thirdly, to decentralize and distribute AA

functionalities between modules, robust Object Oriented

heuristics have been used and some modular decentralized

principles has obtained. Then new AA decentralized

principles extracted from these modular decentralized

principles. Then, a new modular AA architecture for web

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

698 | P a g e

portals and CMS has been proposed. Finally, for evaluation

of new architecture, it has been shown that all requirements

of existing approaches covers by new architecture.

 class M ED A

Content Access

File Access Data Access

Service Access Mail Access

Module Repository

Module Installer

Module Profiles

Interface Repository

Interface Profiles

Interface Versioning

CMS Base-Modules

Template Manager

Personalization Manager

Themes Manager

MultiLanguage Manager

Localization Manager

Search Manager

Logging Manager

SiteMap Manager

Runtime Modules

Presentation Manager AA Manager Exception Manager

Event Bus

Publication Manager Service Bus CMS Modules

Other SystemsSuperAdmin ModuleAdminEndUser

Ne ws

Album

«use» «use» «use»

Fig. 1. Proposed modular architecture for web portals.

II. INVESTIGATING PREVIOUS APPROACHES
This section has been provided in three categories. Firstly,

AA architectures of web portal and CMS have been

provided, and then AA approaches in other areas have been

investigated and presented.

2.1 AA Architectures of web portals and CMS

To examine AA architecture of web portals and CMD, we

used 20 most powerful CMS based on [19] and investigate

all their architectures. These are as following: Alfresco

WCM [20], CMSMadeSimple [21], Concrete5 [22],

DotNetNuke [23], Drupal [24], e107 [25], eZ Publish [26],

Joomla! [27], Liferay [4], MODx [28], Movable Type [29],

OpenCms [30], Plone [31], SilverStripe [32], Textpattern

[33], Tiki Wiki CMS Groupware [34], Typo3 [35], Umbraco

[36], WordPress [37], Xoops [38]. None of them used

decentralized approach.

Some of the architectures have used other approaches. For

example [39], [40] and [41] used component oriented

approaches, and [42] have used a pattern based approach.

Some another architecture like [4] to reach a high quality of

extendibility, used an event driven approach. But none of

them used decentralized approach.

2.2 Previous AA approaches

Previous studies of AA used a centralize approach as well,

hence all AA data and its implementation is performed by

Core [4]. However some studies distributed AA data into

modules, Core is controlling and deciding about AA [5].

This centralized thinking has some inadequacy which will

be discussed in the reminder.

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

699 | P a g e

To authenticating, some systems uses an standard account

management such as LDAP, SSO, NTLM, OpenID,

OpenSSO and Site Minder etc [2], [3], [4], [5].

To perform authorization, a variety of resources of a system

can be accessed by user in different levels. These resource

types can be Application, Portlet, Locations and Files

(Content-Model-Resources), Communications, Pages (or

Forms), Use Cases (or Actions), Tables (or Database

Entities), Objects (or Business Entities).

To authorizing, various approaches are provided. Role-

Based Access Control (RBAC) is the common method for

controlling user access to system resources and actions [6].

Some of the approached, for special uses, separated

authentication from authorization [7]. These methods used

federated user administration, therefore authentication

performs in user’s home system and authorization performs

in service provider system [8]. To support extensibility and

modifiability, AA methods used some new tools like Aspect

Oriented Programming Languages [9]. Open Service

Gateway initiative (OSGi) framework uses java standard

called Java Authentication and Authorization Service which

is a centralized approach [15].

Cristian and Gabriela showed that by distributing the

security functions, a more flexible architecture can be

designed that would lower the costs associated with

implementation, administration and maintenance [10].

III. PROBLEMS OF EXISTING ARCHITECTURES
One of the important advantages of being centralized is that

AA functions can be developed for once and all the modules

can use the same functions and then the complexity of

modules decrease. In the other hand, being centralized can

cause numerous problems in development of systems which

categorized as fallowing:

Req1: Modules have to use the AA pattern (AAP) which is

implemented in Core. So, modules cohesion is increasing

and dependency on Core is increasing as well, therefore

modularity of system will be decreased.

Req2: Developing small-scale modules need to follow the

AAP of the Core. Consequently, complexity of developing

small-scale modules will be increased.

Req3: The implemented AAP of the Core is not complete in

general. Probably, developing large-scale modules is needed

to use a new AAP which is not supported by the Core.

Req4: Due to centralized approach and dependency of

modules on Core, performing a Unit Test on modules is

difficult and quality of testability is decreasing.

Req5: Due to variety of authorizations based on different

resource types, considering all of them in the Core cause to

complexity of Core.

Req6: Because of centralized approach, integration of

implemented modules into different systems with different

Cores takes some efforts due to lack of standard AA

interface. Therefore system integrity and modules portability

decrease. This problem will emerge on “Plugging In” a new

module or making a group of existing systems “Single Sign

In”.

Req7: In centralized approach, the overall AAP of the Core

(so-called Big Picture) is apparent to all modules. So,

encapsulation of AAP is violated.

Table 1 presents the relationship obtained from the

categorizing of above-mentioned requirements with

software architecture quality attributes. In previous studies

which are described in part 2, none of above-mentioned

problems are considered.

Table 1. Quality Attributes Affected By Requirement List.

LEGEND

E: Extendibility;

M: Modifiability;

Mo: Modularity;

I: Integrity;

Io: Interoperability;

P: Portability;

T: Testability.

T P Io I Mo M E

 x Req1

 x x Req2

 x x Req3

x Req4

 x x Req5

 x x Req6

 x x Req7

IV. MODULAR AA PRINCIPLES
To provide a new architecture for AA in CMS and web

portals, we used Object Oriented principles and heuristics

provided in [1]. Based on [1], we can consider a module as

an object, and then apply object oriented principles to obtain

new approach to modular development principles. List of

used Object Oriented Heuristics from [1] are: Heuristic 2.1,

2.2, 2.4, 2.5, 2.6, 2.9, 2.10, 3.1, 3.2, 3.7, 3.8, 4.1, 4.2, 4.3,

4.4 and 5.3.

By analyzing concepts of above-mentioned heuristics and

their relation with modularity concepts, we can provide

some advice for developing modular systems which is

shown in Table 2. In the centralized approaches, Core will

become a God module.

Table 2. Object Oriented Heuristics to Modular Advice.

Heuristics Code Provided Advice

H2.1, H5.3 M1
Each module should hold and

manage its data within itself.

H2.9, H2.10 M2
Each module should perform all its

functionalities by itself.

H2.2, H2.3, H2.4,

H2.5, H2.6, H4.1,

H4.2, H4.3

M3
Optimize and minimize module

interface.

H3.1, H3.2, H3.7,

H3.8, H2.9, H2.10
M4

Distribute common functionalities of

modules to themselves.

Authorization of each module doesn’t belong to Core

functionality. Therefore authorization should not be

centralized and its functionality should be distributed

horizontally among modules. According to provided advice

in Table 2, we can obtain some AA principles which are

shown in Table 3, in order to provide a new architecture.

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

700 | P a g e

Table 3. Obtained AA Principles.

Advice

Code

Principle

M4, M2
Each module has to perform its authorization

by itself.

M4, M1
Each module has to hold and manage its

authorization data.

M3
Standardize an AA interface between Core

and Modules.

V. NEW AA ARCHITECTURE
Fig. 2 illustrates detailed AA architecture based on

principles which are shown in Table 3.

 pkg AA Architecture

Core

AA Manager

Ev ent Bus

+ RaiseEvent(strXML) : String

a Module

AA Ev ent Processor

RaiseEvent(strXML) : String

+ SetEvent(strXML) : String

Module Ev ent Processor

RaiseEvent(strXML) : String

+ SetEvent(strXML) : String

Fig. 2. AA Manager detailed architecture.

In this architecture, each module and Core as a module,

have to implement a class by the name of EventProcessor

and use EventBus as a channel for interacting messages

between Core and modules. In this architecture we put

messages in the form of Events. All of modules and even the

Core use RaiseEvent method from EventBus for sending

events and EventBus uses SetEvent method from

EventProcessor (implemented in each module) for sending

delivered events to target modules. Security of interaction

between Core and modules is performed by EventBus.

Interaction between Core and modules are prepared by two

XML files by the name of Document Type Definition 1

(DTD1) and DTD2. For example after a user logged in to

system, Core will send a request (in the form of an event) to

get User Access List from all the modules to represent User

Control Panel. This action will perform by the use of an

event like: +getAccessList(String Username):String;

DTD1 is a template for sent events. DTD1 contains event-

type, event-name, input parameters names and values, return

type and value, event-sender, event-receiver(s), etc. An

instance of DTD1 presented in Fig. 3. The standard DTD of

DTD1 has been shown as following:

<?xml version="1.0"?>

<!DOCTYPE DTD1 [

<!ELEMENT Event

(InputFields,ReturnType)>

<!ATTLIST Event

 EventType CDATA #REQUIRED

 EventName CDATA #REQUIRED

 getAccessList CDATA #REQUIRED

 EventID CDATA #REQUIRED

 SenderName CDATA #REQUIRED

 SenderID CDATA #REQUIRED

 ReceiverNames CDATA #REQUIRED

 ReceiverIDs CDATA #REQUIRED

 RaiseDateTime CDATA #IMPLIED

 Description CDATA #IMPLIED>

<!ELEMENT InputFields(Field+)>

 <!ELEMENT Field(EMPTY)>

 <!ATTLIST Field

 Name CDATA #REQUIRED

 Value CDATA #REQUIRED >

<!ELEMENT ReturnType (DTD2*)>]>

Each module for sending an event must put it in the form of

DTD1 and invoke RaiseEvent method from EventBus. Then

EventBus analyze delivered event and in order to sending

event to target modules, use the SetEvent method from

EventProcessor class of each module.

After that, all recipient modules can response to this event

by returning value of SetEvent in the form of DTD2. DTD2

contains returned values of each module. An instance of

DTD2 presented in Fig. 4. The standard DTD of DTD2 has

been shown as following:

<?xml version="1.0"?>

<!DOCTYPE DTD2 [

<!ELEMENT ReturnObjects (Object*)>

<!ATTLIST ReturnObjects

 ModuleName CDATA #REQUIRED

 ModuleID CDATA #REQUIRED

 ReturnDateTime CDATA #IMPLIED

 Name CDATA #REQUIRED

 Description CDATA #IMPLIED>

<!ELEMENT Object(Field+)>

 <!ELEMENT Field(EMPTY)>

 <!ATTLIST Field

 Name CDATA #REQUIRED

 Value CDATA #REQUIRED>]>

Fig. 3. An instance of DTD1.

<Event EventType=”AAMNG” EventName=”getAccessList”
EventID=”123” SenderName=”Core” SenderID=”379”
ReceiverNames=”Core | a Module | *” ReceiverIDs=”12 , 32 |
*” RaiseDateTime=” ” Description=” ”>

<InputFields>
 <Field Name=”UserName”
Value=”Jane”/>
</InputFields>
<Return Type=”String”>
 <!-- return info must be in here in DTD2
format -->

</Return>
</Event>

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

701 | P a g e

Fig. 4. An instance of DTD2.

Finally, EventBus put all of received DTD2s from each

module in the <return> tag of DTD1 and passes the final

DTD1 as return value of RaiseEvent.

VI. AA DISTILLED ANALYSIS AND DESIGN
Regarding to previous sections, we can divide all AA use

cases into two layers: Authentication Layer and

Authorization Layer. Authentication performs in the Core

and authorization performs in the modules. Fig. 5 is a

distilled analysis and design artifact of AA.

Static Aspect Dynamic Aspect

 class AA Static Aspects

SystemUsers

- Password: String

- Username: String

- UsersOverallStatus: int

SystemRoles

- Name: String

- RoleID: int

such as :

 - SuperAdmin

 - ModuleAdmin

 - User

*

has Overall Role

1..*

 uc Authentication Functionality

SuperAdmin

Add new

CoreAdmin

Change

CoreAdmin

Status

Add New

ModuleAdmin

Change

ModuleAdmin

Status
Add new User

Change User

Ov erall Status
Sign Up

Login

Logout

Change

Password

Base User

User

Core

 (Authentication

Layer)

 class AA Static Aspects

We know each Module have to save

Usernames

and other things is Black Box

 uc Authorization Functionality

Black Box

ModuleAdmin

Set new User

Set User

Permissions

Change User

Status

Change User

Permissions

Modules

(Authorization

Layer)

Fig. 5. AA distilled analysis and design.

VII. OPTIMIZED EVENT LIST FOR AA
Regarding to Event-Driven Architecture, we should extract

an optimized event list for communication between Core

and Modules, as it capture all AA use cases. The obtained

optimized event list and its descriptions are shown in Table

4. Adding a new event will not affect AA in any way. For

example, in order to gather User Overall Log, we can add an

event such as: +getLog(String Username):String; into event

list. For another example, if modules want to have a

different session timeout for each user, at any time it can ask

from Core to check the Login Status of that user. It can be

done by just adding three events such as: Login and logout

from Core to modules and isLogedIn from modules to Core.

Since we have not a pure modular content management

system that let a module to control its contents just by itself,

we can compensate this shortage with adding some simple

events to event list. Contents of a module can be Files and

Database Tables.

For controlling these contents, modules cannot act

independently and Core has to authorize modules to access

contents of each other. Therefore, as any user want to access

any content, Core asks for user permission from

corresponding module.

So, additional events are as following:

+ActionToTable(String Username, String TableName,

TableAction action):Boolean;

+ActionToFile(String Username, String FileName,

FileAction action):Boolean;

TableAction can be CRUD (Create, Read, Update or Delete)

and FileAction can be RW (Read or write).

Core can be considered as a module. It means that Core has

to authorize its users as well as other modules. Every event

which has risen by Core should be responded by Core as

well as other modules.

<ReturnObjects ModuleName=”News” ModuleID=”123”
ReturnDateTime=”” Name=”News Access List”
Description=””>
<Object>
 <Field Name=”ID” Value=”1”/>
 <Field Name=”Title” Value=”Add New News”/>
 <Field Name=”URL”
Value=”www.test.com/UI/News?1”/>
</Object>
<Object>
 <Field Name=”ID” Value=”2”/>
 <Field Name=”Title” Value=”Change News”/>
 <Field Name=”URL”
Value=”www.test.com/UI/News?2”/>
</Object>
</ReturnObjects>

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

702 | P a g e

VIII. EVALUATION
In section 2, we categorized a requirement list as problems

of existing method. The provided architecture in this paper

for AA Manager captures all of these requirements which

are shown in Table 5. In fact, AA improves all quality

attributes which are mentioned in Table 1.

Table 4. Optimized Event List For AA.

Use cases Events Description

New User, Sign Up NewUser(String Username):void;
As soon as a new user registers in system, Core should inform all the

modules, so the modules can grant default permissions to he/she.

New ModuleAdmin
NewModuleAdmin(String

Username):void;

As soon as a new ModuleAdmin registers in system, Core should

inform the target module.

Change User

Overall Status

ChangeUserStatus(String Username,

UserStatus status):void;

When Core changes overall status of a user, should inform all the

modules.

Login
getAccessList(String

Username):String;

For creating Control Panel for a user.

Other Use Cases --- For other cases modules act independently.

Table 5. Requirement List Covered by new architecture.

Description Captured Requirements
Modules are independent in selecting their own AAP. They just have to

consider Core’s standard interface.
Req1, Req2, Req3

Since modules are not dependent to Core for authorization, unit test of each

module can perform easily far from the Core.
Req4

Modules are free to choose their authorization types. If a modular content

management system is not available, Core has to ask for permission from

corresponding module.

Req5

As establishing a new standard interface for Core and modules

communication, integrity and portability of modules was increased.
Req6, Req7

9. Conclusion and Future works
In this paper, a new AA architecture as a new extensible and

modifiable architecture for web portals and content

management systems by a decentralized approach has been

provided.

Provided architecture can be use in Enterprise IS, Service

Oriented Platforms and any large-scale modular software.

New architecture used an Event-Driven method, so changes

can be applied easier by adding new event in it and used

XML templates as its communication protocol which makes

it so understandable for different platforms. Considering that

provided architecture is based on robust object oriented

principles and developed in a decentralized approach and

distributed complexity of the Core among modules, so

module development will take extra effort than before.

Although it could be a disadvantage in comparison with

centralized systems, this extra effort is worth benefiting of

being decentralized.

The Process which followed in this paper can be apply to

development of other part of suggested architecture in

section 1 such as developing a Modular Data Access,

Modular File Access and Modular Service Access (Modular

Content Access).

REFERENCES
[1] A. J. Riel, Object-Oriented Design Heuristics,

Addison Wesley, 1996.

[2] R. Jay, SAP NetWeaver Portal Technology – The

Complete Reference, McGraw Hill, 2008.

[3] M. Shariff, V. Choudhary, A. Bhandari, P.

Majmudar, Alfresco 3 Enterprise Content

Management Implementation, PACKT Publishing,

2009.

[4] J. X. Yuan, Liferay Portal 6 Enterprise Intranets,

PACKT Publishing, 2010.

[5] K. Pope, Zend Framework 1.8 Web Application

Development, PACKT Publishing, 2009.

[6] R. S. Sanhu, Role hierarchies and constraints for

lattice-based access controls, In Proceedings of the

Fourth European Symposium on Research in

Computer Security (ESORICS96,Rome, Italy, Sept.

25-27), E. Bertino, Ed. Springer-Verlag, New York,

NY, 1996.

[7] R. Castro-Rojo, D.R. López, The PAPI System: Point

of Access to Providers of Information, Terena, 2001.

[8] M. Steinemann, T. Spreng, A. Bachmayer, T. Braun,

C. Graf, M. Guggisberg, Authentication and

Authorization Infrastructure: Portal Architecture and

Prototype Implementation, IAM-03-012, 2003.

[9] G. Ahn, H. Hu, J. Jin. Security-Enhanced OSGi

Service Environments, IEEE Transactions on

Systems, Man and Cybernetics—Part C: Applications

and Reviews, Vol. 39, No. 5, September 2009.

[10] C. Opincaru, G. Gheorghe, Service Oriented Security

Architecture, 2008.

[11] M.Sojka, P. Piša, D. Faggioli, T. Cucinotta, F.

Checconi , Z. Hanzalek, G. Lipari, Modular software

architecture for flexible reservation mechanisms on

heterogeneous resources, Journal of Systems

Architecture, 2011.

[12] P. Intapong, S. Settapat, B. Kaewkamnerdpong, T.

Achalakul. Modular Web-Based Collaboration

GholamAli Nejad HajAli Irani / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.697-703

703 | P a g e

Platform, International Journal of Advanced Science

and Technology, 2010.

[13] O. Etzion, P. Niblett , Event Processing in Action,

Manning Publications, 2011.

[14] D. Hunter et al. Beginning XML, 4th Edition, Wrox

Press, 2007.

[15] R. S. Hall, K. Pauls, S. McCulloch, D. Savage, OSGi

in Action, Manning Publications, 2011.

[16] B. Boiko, Content Management Bible, 2nd Edition,

Wiley Publishing, Inc., Indianapolis, Indiana, 2005

[17] The Content Management Comparison Tool,

available at http://www.cmsmatrix.org

[18] Drupal, Open Source CMS, available at

http://Drupal.org/Project/Modules

[19] The 2010 Open Source CMS Market Share Report,

water & stone, available at www.waterandstone.com

[20] D. Caruana, J. Newton, M. Farman, M. G. Uzquiano,

K. Roast, Professional Alfresco, Wiley Publishing,

Inc, 2010

[21] S. Goldstein, CMS Made Simple Development

Cookbook, Packt Publishing, 2011

[22] Concrete5 free CMS, Open Source Content

Management System, available at

http://www.concrete5.org/documentation/developers/

[23] S. Walker, B. Scarbeau, D. Hardy, S. Schultes, R.

Morgan, Professional DotNetNuke 5, Open Source

Web Application Framework for ASP.NET, Wiley

Publishing, Inc, 2009

[24] M. Butcher, G. Dunlap, M. Farina, L. Garfield, K.

Rickard, J. Albin Wilkins, Drupal 7 Module

Development, Packt Publishing, 2010

[25] e107 website system, available at

http://wiki.e107.org/index.php?title=Category:Develo

pment

[26] F. Fullone, F. Trucchia, eZ Publish 4: Enterprise Web

Sites Step-by-Step, Packt Publishing, 2009

[27] C. Lanham, J. Kennard, Mastering Joomla! 1.5

Extension and Framework Development, Packt

Publishing, 2010

[28] A. S. John, MODx 2.0 Web Development, Packt

Publishing, 2011

[29] R. Cadenhead, Movable Type 3.0 Bible Desktop

Edition, John Wiley & Sons, Inc, 2004

[30] D. Liliedahl, OpenCms 7 Development, Packt

Publishing, 2008

[31] J. Meloni, Plone Fast Track The basics of building a

content-management system with Plone, Sams

Publishing, 2004

[32] P. Krenn, SilverStripe 2.4 Module Extension, Themes,

and Widgets: Beginner's Guide, Packt Publishing,

2011

[33] K. Potts, R. Sable, N. Smith, C. Lindley, M. Fredborg,

Textpattern Solutions: PHP-Based Content

Management Made Easy, Friends of ED, 2007

[34] Documentation for Tiki Wiki CMS Groupware,

available at http://doc.tiki.org/Documentation

[35] W. Altmann, R. Fritz, D. Hinderink, TYPO3

Enterprise Content Management, Packt Publishing,

2005

[36] N. Wahlberg, P. Sterling, N. Hartvig, Umbraco User's

Guide, wrox, 2011

[37] A. Brazell, WordPress Bible, Wiley Publishing, Inc,

2010

[38] S. Ruoyu, Designing for XOOPS: A Designer's

Quickstart Guide to Content Management, O'Reilly,

2011

[39] M. Amor, L. Fuentes, Malaca: A component and

aspect-oriented agent architecture, Information and

Software Technology 51 (2009)

[40] G. Jung, J. Hatcliff, A type-centric framework for

specifying heterogeneous, large-scale, component-

oriented, architectures, Science of Computer

Programming 75 (2010)

[41] J.S. Lee, D.H. Bae, An aspect-oriented framework for

developing component-based software with the

collaboration-based architectural style, Information

and Software Technology 46 (2004)

[42] C.H. Chang, C.W. Lu, P. A. Hsiung, Pattern-based

framework for modularized software development

and evolution robustness, Information and Software

Technology 53 (2011)

http://www.cmsmatrix.org/
http://drupal.org/Project/Modules
http://www.waterandstone.com/
http://www.concrete5.org/documentation/developers/
http://wiki.e107.org/index.php?title=Category:Development
http://wiki.e107.org/index.php?title=Category:Development
http://doc.tiki.org/Documentation

