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Abstract 
The objective of hazards (lifetime) analysis is to advance and promote statistical science in the various applied fields 

that deal with lifetime (survival) data including: actuarial science and reliability engineering. The lifetime data analysis 

provides special techniques that are required to compare the risks for failure. Bayesian semi-parametric methods have 

been applied to survival analysis problems since the emergence of the area of the Bayesian semi-parametric procedures. 

Cox proportional hazard model (PHM) estimates hazard ratios. Cox PHM is considered as constant hazard ratio over 

time if and only if Cox PHM assumptions are not violated. In Bayesian analysis, Markov Chin Monte Carlo (MCMC) 

methods have become a ubiquitous tool as the computer is more powerful. In this article, estimation of the parameters in 

Cox PHM is presented by using Bayes methods based on MCMC algorithm and duplicate the results using non-Bayes 

framework. The method is motivated by an example based on a hypothetical engineering insurance system.   
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1   Introduction 
In the well known Cox proportional hazards model (PHM), introduced by Cox (1972) as a tool for analyzing lifetime 

data in the both of biomedical and engineering studies. It has become the standard nonparametric regression model for 

accelerated life testing in the past few years. The basic underlying assumption under the PHM is that the hazard rate is 

proportional to the effect of each explanatory (risk) variable. In other words, the effect of each explanatory variable is 

found by multiplying the baseline hazard by some function of the explanatory variable vector, which does not depend 

on time t. (see, for example, Cox and Oakes, 1984; Lane et al., 1986). The main advantages of the Cox proportional 

hazard model are that it explicitly incorporates the time to failure into the model and it requires no distributional 

assumption in estimating either the coefficients of the explanatory variables or baseline hazard function. Moreover, it is 

straightforward to estimate the parameters of interest in Cox PHM using common statistical packages, which is widely 

available these days. Meanwhile, one should consider two possible problems in employing the PHM. First, there might 

existing many ties among survival times for each observation (especially for the censored lifetime for non failures), 

which need to be corrected. Second, an assumption of time-constant explanatory variables has to be dealt with. More 

details will be explained in the later part of this section.  

Hazard models, including the Cox proportional hazard model, have been successfully verified as an efficient 

classification and prediction tool for failure studies in the financial area (e.g., Kim et al., 1995; Lane et al., 1986; 

Whalen, 1991). The robustness of the model also has been proved in similar studies of other industries, in labor 

economics, and the social sciences (e.g., Chen and Lee, 1993; Kiefer, 1988; Ng, Cram and Jenkins, 1991).  

The proportional hazards model has the following general form: 

  0( ; ) ( | 0)exp ( )exp( );t Z t Z tZ Z      
 

(1) 

This is a product of the unknown baseline hazard rate 0 ( )t and the exponential function of the unknown regression 

coefficient. Typically; both   and Z  are assumed to be constant over time t . The PHM is considered semi-parametric 

in that exp( )Z is parametric and the baseline hazard 0 ( )t is nonparametric.  

1.1   motivate the problem and derive model 

In this paper, we will motivate the problem and derive model (1) as follows. Individual rating in non-life insurance may 

be based on many factors such as age of policy holder, urbanization,…,etc (Keiding, 1998). On the other hand, the 

reliability study for an engineering insurance system (EIS) is considered in this paper. Although it is a hypothetical 

example of a policy insurance contract, it could very well constitute a real situation. It is well known that any insurance 

business, it is critical to ensure the efficient management of insurance risk (see, 

www.fengineering.lt/en/solutions/insurance-risk). Consider an insurance company (insurer) to its owner‘ project 

(insured) a one year lifetime maintenance contract (insurance policy). This policy, guarantee to upgrade the product to 

replace with a new version without additional cost. Whenever, EIS failure occurs during the lifetime of the 

maintenance, the insured calls the insurance company to change this machine tool. Our insurance company is very 

interested in providing that system is reliable enough. To illustrate the analysis that will be presented in Section 3, we 

imagine that the EIS consists of the data in Table 1. The data come from Merrick and Soyer (2003).  

http://www.fengineering.lt/en/solutions/insurance-risk
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The data consist of the failure times of  i = 1,…,24  machine tools and their corresponding explanatory variables are 

cutting speed (its label is ,1iZ ), feed rate (its label is ,2iZ ), and depth of cut (its label is ,3iZ ). The 24 machine tools 

used for the cutting were tungsten carbide disposable inserts mounted in a tool holder. A 7.5-horsepower engine lathe 

equipped with a three-jaw universal chuck and a live center mounted in the tailstock was used to perform the cutting 

operation. The cutting operations were performed without using cutting fluids. It was pointed out in Merrick and Soyer 

(2003), the aim of machine tool life modeling is to aid decisions concerning the operation of machine tools. An 

important decision in the operation of machine tools is when to replace them. 

The main goal of the insurance company is to estimate the hazard ratios in order to divide the risk into three parts: 

1) Lower risk 2) Intermediate risk 3) Higher risk 

This deviation of the risk helps the company to determine the suitable premiums and in the same time the insurance 

company achieves a reasonable profit. This study clearly constitutes as a real example of EIS. Reliability (survival 

function) is one of the key quality characteristics of components, products and systems. It cannot be directly measured 

and assessed like other quality characteristics but can only be predicted for given times and conditions. Its value 

depends on the use conditions of the product (risk factors) as well as the time at which it is to be predicted. Reliability 

prediction has a major impact on critical decisions such as the optimum release time of the product, the type and length 

of warranty policy and associated duration and cost, and the determination of the optimum maintenance and 

replacement schedules. Therefore, it is important to provide accurate reliability predictions over time in order to 

determine accurately the repair, inspection and replacements strategies of products and systems. 

Table 1 
The machine tool failure data* 

Machine tool Tool life (days) Speed Feed Depth of cut 

1 70 340 0.0063 0.021 

2 29 570 0.0063 0.021 

3 60 340 0.0141 0.021 

4 28 570 0.01416 0.021 

5 64 340 0.0063 0.021 

6 32 570 0.0063 0.04 

7 44 340 0.01416 0.04 

8 24 570 0.01416 0.04 

9 35 440 0.00905 0.029 

10 31 440 0.00905 0.029 

11 38 440 0.00905 0.029 

12 35 440 0.00905 0.029 

13 52 305 0.00905 0.029 

14 23 635 0.00905 0.029 

15 40 440 0.00472 0.029 

16 28 440 0.01732 0.029 

17 46 440 0.00905 0.0135 

18 33 440 0.00905 0.0455 

19 46 305 0.00905 0.029 

20 27 635 0.00905 0.029 

21 37 440 0.00472 0.029 

22 34 440 0.01732 0.029 

23 41 440 0.00905 0.0135 

24 28 440 0.00905 0.0455 

                                        *Source. Merrick and Soyer (2003) 

1.2   PHM for machine tool failure time from non-Bayesian perspective 

In this subsection, we briefly describe the problem and the model structure that we consider throughout the article. We 
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follow Merrick and Soyer (2003) and let Ti be the life length of the machine tool i. Assuming that Ti is continuous, the 

failure rate function (failure rate is the frequency with which an engineered system or component fails, expressed for 

example in failures per hour, so it is important in reliability engineering) of the distribution of Ti is given by 

0

lim
( ) ( )

( )
( )t

i i
i

i

P t T t t f t
t

t S t


 

  
 

  

(2) 

where  ( )if t  is the probability density function of Ti and  

 ( ) ( ) exp ( )i i iS t P T t t   
 

(3) 

is the reliability of machine tool i at time t, with 

0

( ) ( ) ,

t

i it u du   the cumulative failure rate.  The PHM for the data 

in Table 1 is specifying by 

 0 1 ,1 2 ,2 3 ,3( ; ) ( )exp ln ln lni i i i it Z t Z Z Z        (4) 

The PH model is distribution-free requiring only the ratio of hazard rates between two stress levels to be constant with 

time, i.e., from (4) 

Hazard Ratio (HR) =  1 ,1 2 ,2 3 ,3
0

( ; )
exp ln ln ln

( )

i i
i i i

t Z
Z Z Z

t


  


    (5) 

The dependent variable in PHM is time to failure (or survival time) of an observation. For the PHM, the coefficient of 

each variable is estimated using a partial likelihood method. Then the partial likelihood is maximized with respect to the 

parameters  β = (β1, β2, β3). In most situations, we are interested in the parameter estimates than the shape of the hazard. 

The HR (5) , is the relative risk of failure at time  t. From the interpretation of the model in the previous subsection it is 

obvious that β characterizes the ‗effect‘ of Z. So β should be the focus of our inference while 0 ( )t is ―a nuisance 

parameter‖. Given a sample of survival data in Table 1, our inferential problems include: 

1) Estimate β and derive its statistical properties; 

2) Testing hypothesis H0: β = 0; 

3) Diagnostics. 

Since the baseline hazard 0 ( )t in (5) is left completely unspecified (infinite dimensional), ordinary likelihood 

methods can't be used to estimate β. In model (4), When Ti is a machine tool to right-censorship, we observe Xi = min 

(Ti, Ci) and  i  = I(Ti ≤ Ci); where Ci is the censoring time and I(E) indicates, by the values 1 versus 0, whether or not 

the event E occurs. Assume that Ti and Ci are independent conditional on Zi. Let (Xi, i , Zi) (i = 1,…,n) be independent 

observations. Andersen and Gill (1982) elegantly proved the asymptotic distribution of ̂  by applying martingale 

theory in the counting process framework. In order to study the properties of the estimator ̂ , it is useful to formulate 

the problem by means of counting processes as follows: 

Let us break the time axis (the follow-up time) into a grid of points. Assume the survival time is continuous. We hence 

can take the grid points dense enough so that at most one death can occur within any interval. Let dNi(t) denote the 

indicator for the i
th

 individual being observed to die in [t, t + t), such that  

( ) ( [ , ),  1)i i idN t I X t t t      

Let Yi(t) denote the indicator for whether or not the i
th

 individual is at risk at time t, such that ( ) ( )i iY t I X t  . Let 

1
( ) ( )

n

ii
dN t dN t


 denote the number of failures for the whole sample that occur in [t, t + t). Since, it is assumed 

that t is sufficiently small, so dN(t) is either 1 or 0 at any time t. The question now is, among Y(t) = 
1

( )
n

ii
Y t

  

individuals, what is the probability that the observed failure happened to the i
th

 machine tool (who is actually observed 

to fail at a point time  t) rather than to the other machine tool. The estimation for β is the answer of that question. 

Parameter estimates in the Cox PHM are obtained by maximizing "the partial likelihood function", which derived by 

Cox (1975) derived the to be as 
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(6) 

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Engineered
http://en.wikipedia.org/wiki/Component
http://en.wikipedia.org/wiki/Reliability_engineering


Ayman A. Mostafa / International Journal of Engineering Research and Applications (IJERA)      

ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.374-385 

377 | P a g e  
 

 

 1

1

exp ( )
( ) 

( ) exp ( )

i

n
i i

n
i

i i i

Z X
PL

Y X Z X










 
 

 
  

 
 
 


 



 

where Ri(Xi) is the risk set, i.e., the set of indices corresponding to individuals at risk and uncensored at time Xi. The 

corresponding score function is: 

U(β) = log ( )PL 
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The maximum partial likelihood estimator ̂  is the solution to U(β) = 0. Tsiatis (1981) prove that 

 0
ˆn   converges to multivariate normal distribution (with mean Zero and variance 1( )I  ) where 

2

log ( )I E PL 
 

 
   

   

 

Johnsen (1983) demonstrated that the partial likelihood (6) may be viewed as a ―profile likelihood‖ in which the 

unknown baseline function 0 ( )t is replaced in the total likelihood by a nonparametric maximum likelihood estimate. 

The PHM assumes that the effects of the lnZi = (lnZ1,i, lnZ2,i, lnZ3,i) on hazard ratio are constant over time. In other 

words, it assumes that the hazard for one firm is a fixed proportion of the hazard for any other firm in the study. 

However, according to Atta and Sözer (2007), ignoring the non-proportional hazards in an analysis can lead us to 

incorrect results. For this reason, with applying the model (5) to the failure data in Table 1, one should first check the 

proportional hazards assumptions. The structure of this paper is as follows. Section  2, will present a Bayesian semi-

parametric PHM to analyze machine tool failures in Table 1.  

 Section 3 shows how the method can be adapted reanalyzed using the classical or non-Bayesian (frequentist) 

approach and then turn to apply the Bayesian approach using WinBUGS software. The paper concludes with a 

discussion.  

2    The proportional hazards model and Bayes structure 
In the statistical literature many methods have been presented to deal with PHM with censored observations, both 

within the Bayesian and non-Bayesian frameworks, and such methods have been successfully applied to, e.g., reliability 

problems. Also, in reliability theory it is often emphasized that, through shortage of statistical data and possibilities for 

experiments, one often needs to rely heavily on judgments of engineers, or other experts, for which means Bayesian 

methods are attractive. It is therefore important that such judgments can be elicited easily to provide informative prior 

distributions that reflect the knowledge of the engineers well. In this Section, we will review the Cox PHM from 

Bayesian point of view. 

2.1  Application of martingales in the PHM 

The usage and success of Cox PHM are now a big achievement for the analysis of survival time data with 

covariates (Lawless, 1982). It turned out that the martingale concept had an important role to play in Cox model. 

Counting processes provided a natural framework in which to study the phenomenon and research activities in this area 

were already on the agenda, as exemplified above. In the original article for Cox (1972), he used a factor of the full 

likelihood, which he later justified and termed partial likelihood in Cox (1975), to estimate β. It soon became apparent 

that the Cox model could be immediately applied for the recurrent event intensity, and Johansen‘s (1983) derivation of 

Cox‘s partial likelihood as a profile likelihood also generalized quite easily. The analysis of counting process data, 

including survival data, is usually based on the modeling of the intensity.  

Andersen and Gill (1982) extended (2.3) to the counting process framework and gave elegant martingale proofs 

for the asymptotic properties of the associated estimators in the models try to fit models for survival data. Others that 

have contributed to establishing asymptotic results for the model are Tsiatis (1981) and Næs (1982). If we have  n = 24  

machine tools under investigations, for the machine tool i, i = 1,…,24; ( )iI t is the intensity process for a counting 

process given covariate vector  ,1 ,2 ,3( , , )i i i iZ Z Z Z , and ( )iY t  is the at risk indicator, i.e., the set of subjects still at 
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risk at the time, iT , of failure for subject i  (i.e., alive and uncensored at time point just before time t), furthermore, we 

observe process ( ),iN t to count the number of failures which occurred in the interval [0, t]. That process is constant and 

equal to zero between failures and jumps one unit at each failure time. Hence, the rate of a new failure is then seen to be 

( ) ( | ).( )i i iI t Y t Zt   The intensity ( )iI t  may be characterized as the probability that the event of interest occurs in the 

small time interval[ , )t t dt , given that it has not happened before. This gives approximately 

 0( ) ( | ) ( )exp ( )ii i idN t t Z dt t Z I t                  (8) 

where ( )idN t is the increment of ( )
i

N t over the small interval [ , )t t dt (i.e., number of observed failures occurring in 

[ , )t t dt ). Hence ( )iI t , is multiplicative intensity which can be modeled by 

  0( ) ( | ) ( ) ( )exp( ) i ii i iI t Y t Z Y t t Zt     , (9)  

where the intensity process is a product of an observed process and an unobserved function. Hence the intensity process 

for ( )iN t under model (4) is: 

  0( ) ( )exp ( )ii iI t dt Y t Z d t    

where 0 ( )d t represents the instantaneous probability that the subject at risk at time t has an event in the next time 

interval [ , ).t t dt  As pointed out by Clayton (1991; 1994), it turned out that the martingale theory was of fundamental 

importance.  

Suppose that the machine tools were followed to death or censored in a study. Thus we have observed data 

{ ( ),  ( ),  ;  1,2,..., }ii iD Y ZN t t i n  and we have unknown parameters  , 0 ( )t . Under non-informative censoring, 

the likelihood of the data factorizes, with one term depending only on the censoring process and the second term: 

   
( )

00

( ) exp| , ( ) ( ) i

i

dN t

i i i

tt

tL D I t dt I t



 

 
 
 
 

 ; 1,2,..., .i n  (10) 

Hence, according to the probability model under consideration, the variables D have their joint distribution given by   

   
1

( )| , | , ( )

n

i i

i

tL D L D t 



    (11)  

Following the counting process notation introduced above, for machine tool i ( 1,2,...,i n ) represent the process 

counting the failures occurring up to time t, while ( )idN t  is a small increment of ( )iN t over the interval [t, t + dt). 

( )iN t  and
 

( )idN t  equal 1 if the event occurs in [0, t) and [t, t + dt), respectively, and 0 otherwise. Under non-

informative censoring, the observed counting process likelihood is proportional to (10) is following a Poisson form. 

Though ( )idN t  is at most one for all ,i t ; the infinitesimal counting process increments, ( )idN t , contribute to the 

likelihood just as with independent Poisson random variables with means ( )iI t dt over the interval [ , )t t dt . Defining 

the model in this framework allows the intensity to be regarded as constant in that interval (Clayton, 1991). For efficient 

posterior computations, we implement a data augmentation approach based on the consideration that ( )idN t  are 

independent Poisson random variables under the likelihood expression (11), i.e. 

 ( )( ) ~ Poisson iid I t dtN t  (12)  

After D is observed, our interest turns to the posterior distribution  0, ( ) |P t D  . Baye's Theorem tells us 

that    0 0, ( ) | , , ( )P t D P D t    . Thus, whole probability model can now be expressed as the joint posterior 

distribution of the model parameters according to the Bayesian approach, i.e. 

     0 0 0, ( ) | | , ( ) ( ) ( )P t D L D t P P t       (13)  

The focus is on inference for  .  Another quantity of interest is the baseline hazard function, 0 ( )t  which is best 

viewed as a process over time. As (13) has a complicated form, it is most conveniently summarized using simulation. 

Thus might be accomplishing using Gibbs sampler. Implementing a Gibbs sampler coded from scratch would require us 

to identify and then construct an effective simulation method for each of the two related full conditional posterior 
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distributions, namely  0| , ( )P D t  ,  0 |( ) ,P t D  . The Cox‘s partial likelihood (6) can be viewed as a limiting 

case of the marginal posterior of β in the Cox model with a gamma process prior on the cumulative baseline hazard (See 

Chapter 3.2.3, Ibrahim et al., 2001). 

2.2  Prior specification and inference 

The primary motivation of using Bayesian statistics in reliability analysis is the ability to incorporate prior knowledge 

with limited testing results in a formal procedure. This idea is particularly suitable for high reliable systems, which 

cannot afford enough samples to meet the confidence requirement in reliability demonstration test. The problem of 

appropriate choice of prior distribution is the central one confronting the reliability users of Bayesian methods. 

Specifying the model (13) described above will allow us to make use of a user-friendly package for Gibbs sampling 

such as WinBUGS (see, e.g., Lunn et al., 2000; Spiegelhalter et al., 2003). In WinBUGS, we assigned a priori 

distributions to the coordinates of β using independent normal distributions with mean Zero and a large variance such as 

10,000. This reflects our lack of knowledge the risk factors would increase or decrease failure time. Approaches for 

modeling the prior belief for the baseline cumulative failure rate 0 ( )t will be adopted to be the gamma process in our 

analysis, which was suggested by Kalbfleisch (1978); hence we let 

 *
0 0 0( ) ~ ( ),t GP c t c  ; 

where *( )t is the mean of the process such that *( )t  is increasing function with *( ) 0t   and c0 is a specification 

of weight or confidence attached to that guess (a weight parameter of the mean (Ibrahim et al., 2001)). Kalbfleisch 

(1978) showed that if 0 0c  ; then the likelihood (13) is approximately proportional to the partial likelihood (6), 

whereas 0c  , the limit of the likelihood when the Gamma process is replaced by *( )t . In general, *( )t is taken 

to be a known parametric function, such as exponential or Weibull distribution. For example, if specified vector of 

hyper-parameters. The values of the hyper-parameters should be carefully selected to avoid a convergence problem or 

floating problem in MCMC sampling.  

3   Comparing Bayesian and non-Bayesian frameworks results for EIS 

To compare between Bayesian and non-Bayesian  (frequentist) results in fitting hazard ratio (5), our basic strategy in 

this Section will be devoted to find the parameters of interest in Cox PHM from non-Bayesian approach and then turn to 

obtain the posterior distribution of the regression parameters and the survival function using a combination of recent 

Monte Carlo methods.  We will use the dedicated Bayesian software WinBUGS that implement MCMC methodology. 

BUGS is an acronym for ‗Bayesian inference Using Gibbs Sampling‘. Gibbs sampling is a specific MCMC method. 

The Gibbs sampler yields a Markov chain whose stationary distribution is the posterior distribution. An illustrative 

analysis within the data analyzed by Merrick and Soyer (2003), listed in Table 1 as reported at the end of Section 1, 

consist of ‗the time to occurrence failure‘ for each machine in 24 ones. The dimension of covariate vector is 3 with 

,1 ,2 ,3( , , )i i i iZ Z Z Z ; ,1iZ  is the cutting speed, ,2iZ  is the feed rate and ,3iZ  is the depth of cut. Moreover, we show 

how the output of the MCMC algorithm can be used to obtain draws from the posterior of parameter distributions. 

3.1   Application to an engineering insurance system using frequentist statistics 

First, the Cox PH model is fitted to the data in Table 1. The Global Null Hypothesis: β = 0 (the null hypothesis is 

that none of the risk factors has a statistically significant influence on the hazard rate (4)).  Three statistical testing 

procedures, Likelihood ratio test, Score, and Wald, were applied. The results showed that there is a less than 0.01% 

(which is highly significant) chance that one will make a faulty rejection of the null hypothesis. So, the data strongly 

suggests that the hazard rate is dependent on the selected risk factors (cutting speed, feed rate and depth of cut). Thus 

we conclude that the three explanatory variables are needed to adjust the lifetime test. The results of the Cox PH model 

are summarized in Table 2, giving the estimators of hazard ratios for each covariate and their confidence intervals and 

its p-value from the likelihood ratio test.  

Table 2 

Cox's proportional hazards analysis for the machine tool failure data 

 β SE p-value Hazard ratio 95% conf. interval 

lnZ1 12.131 2.542 61.3 10  185519.329 1272.064 2.706×10
7
 

lnZ2 1.975 .746 0.005625 7.209 1.671 31.097 

lnZ3 3.001 .899 0.000935 20.101 3.449 117.146 

 

A point estimate of the effect of  is provided in the Hazard ratio (the slope of the lifetime curve that is a measure of 

how rapidly machine tools are failing) is given column 5 in Table 2. The cutting speed, the feed rate and the depth rate 

are the three covariates that shows a statistically significant impact on the reliability (survival) at the level of α = 0.05. 

Thus, after the final model of significant explanatory variables was created, it was necessary to validate the proportional 

hazards assumption. The proportional hazards model hypotheses are tested for each covariate based on scaled Schonfeld 
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residuals (see, Therneau and Grambsch, 2000). In Figure 1 the plot of scale residuals are given against order time along 

with spline smooth together 95% confidence intervals. The broken lines represent ± 2-standard-error envelopes around 

the fit. The plot does not show a strong trend along the original time variable and the systematic departures from a 

horizontal line are indicative of non-proportional hazards. Furthermore, the proportional hazards assumption was 

assessed by the Score test, in Table 3; the first column is the correlation of the scaled Schoenfeld residuals with the time 

variable. The second column is the test statistic defined previously. The global test is to test simultaneously all the 

slopes are zero. All the p-values are fairly large, indicating that the slopes are zero. In conclusions, through the model 

diagnostics, we find that the model (4) considered fits the data in Table 1 very well. 

Table 3 

Score test of proportional hazards assumptions 

Variables Rho Chi-Square p-value 

lnZ 1 0.0271 0.016 0.899 

lnZ 2 −0.2395 1.049 0.306 

lnZ 3 0.1865 0.694 0.405 

Global 

test . 2.376 0.498 

 

Fig.1 

A graphical assessment of the proportional hazards assumption: Plots of scaled Shoenfeld residual against ordered 

time with a spline smooth for the three covariates. 

 
Influential observations can be detected by investigating the so-called "DfBeta", diagnostics, of estimated changes in 

the regression coefficient upon deleting each observation in turn; that can computed for each subject and covariate. This 

statistics measures the change in regression coefficient of the corresponding covariate, if a machine is left out from 

model estimation. If this value is high (positive or negative), the machine has more influence on the results than other 

machines. Investigation of the characteristics of such machine could lead to the detection of new risk factors. Plotting 

the DfBeta values for each covariate against machine tool as shown in Figure 3, we learn that, there are not any machine 

tool has noticeably identified as influential point. The martingale residual plot to check functional form of the covariate 

is plotted in Figure 4, for the three diagnostic factors. Figure 4 indicates a linear form seems appropriate for the three 

covariates, hence a dichotomized transformation of any covariates not needed (i.e., there is no evidence of nonlinearity 

here) 
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Fig. 3 

Index plots of DfBeta for the Cox regression of time to failure on lnZ1, lnZ2 and lnZ3 

 
 

Fig. 4 

Martingale residuals to check the functional form of the continuous variables lnZ1, lnZ2 and lnZ3 

 
3.2   Application to an engineering insurance system using Bayesian statistics 
As discussed above, the Cox PHM evaluates risk factors to determine the magnitude and significance of their effects on 

failure time. Here, we reanalyze the data listed in Table 1 using WinBUGS software. Given the model assumptions, this 

program performs the Gibbs sampler by simulating from the full conditional distributions. The Bayesian estimators 

were obtained through the implementation of the Gibbs sampling scheme described in Section 2. We implemented 

40,000 iterations of the algorithm and described the first 1,000 iterations as a burn-in. Spiegelhalter et al., (2003), the 

BUGS team, use the idea of parallel multiple chains to check the convergence of the Gibbs sampler, we used 2 chains, 

as shown in Figure 5. 
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Fig. 5 

ACF for the iterations for each chain 

 
The fully quantitative monitoring of parallel multiple chains was first proposed by Gelman and Rubin (1992a, b). The 

chains should start from over-dispersed initial values to ensure good converge of parameter space. To generate the 

Gibbs posterior samples in the previous section, we choose to use two parallel chains. Hence, once convergence has 

been achieved, 40,000 observations are taken from each chain after the burn-in period to reach our goal of 80,000 

observations. The BUGS software offers also a graph of the autocorrelation function (ACF) of the iterations to the 50-

lag for each chain independently (Figure 5). The autocorrelation plot in Figure 5 illustrates such dependence between 

successive observations, which appears to die out before lag 40. This indicates fairly rapid mixing and thus good 

convergence of the parameter space with a reasonably small number of iterations. As a result of thumb if the 

autocorrelations are needed to get rid of the dependence structure, but from (Figure 6), we can be reasonably confident 

that convergence of β has been achieved (the two chains appear to be overlapping one another) and thus the 

convergence looks reasonable. Finally, all the hyper-parameters of the model showed an acceptable convergence to the 

stationary distribution both with graphical tests, like the one in Figure 6, and with statistical tests like the Geweke one 

and the Raftery and Lewis test. 

Fig. 6 

Evolution of the Markov Chain associated to the coefficient of the β for each chain 
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In Table 4, 2.5% and 95.5% correspond to the respective posterior percentiles of β is obtained. Therefore, the 95% 

credible interval for β1 is thus (7.89, 18.08), and the mass for the posterior distribution of  β1 , β2, β3 are to the left of 

zero, indicating 
,1 ,2 ,3
, ,

i i i
Z Z Z  have pronounce effect. This can be further illustrated in a plot of the marginal posterior 

density of β as shown below in Figure 7. When comparing Table 4 with Table 2, we draw the same conclusions about 

the parameter of interest. 

Table 4. 

Posterior summary: ETS lifetime parameters 

Parameter Average SE 25
th

 percentile 79.5
th

 percentile Median 

β1 12.66 2.606 7.89 18.08 12.6 

β2 2.062 0.7637 0.6253 3.599 2.036 

β3 3.145 0.912 1.4 4.965 3.135 

 

Fig. 7 

Estimated marginal density for  

The posterior predictive distribution of the reliability of a given machine tool at defined mission times are shown as Box 

plot in Figure 8 the semi-parametric model (4). The new machine tool is predicted to operate with a cutting velocity of 

440 fpm, a feed rate of .00472 ipr, and a .029-inch depth of cut. 

 

Fig. 8 

Boxplots of the Posterior Distribution of the Survival Probability at 

Fixed Lifetimes Under the Parametric Model. 
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4. Conclusion and recommendation 

Hazard ratios are a specific type of relative risk that is calculated using a statistical technique known as lifetime data 

analysis. The proportional hazard model in lifetime analysis was proposed by Cox (1972) is an ideal tool for 

formulating the relationship between event risks and their associated factors. When the underlying data is properly 

formatted, the estimated parameters, or coefficients, of the model provide intuitive measurements of risk variations for a 

given factor. This evaluation will very useful for any insurance company to determine its premiums in the insurance 

process based on these methods. We have used a semi-parametric model for survival populations based on the Cox 

proportional hazard model from both non-Bayesian and Bayesian perspectives. Such analysis was inconceivable only a 

few years ago. But now, with the great increase in computational power and memory capabilities of new computers, the 

analysis of these kinds of models is not only possible but advisable because they can better explain the relationship 

between the dependent variable and risk factors. 
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