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1. INTRODUCTION 
 

In this paper, we consider the second order neutral delay difference equation with forcing term of the form 

  1 1 2 2( ) ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ) , (1)r n x n p n x n q n x n q n x n e n          

 

where 0n n , 0  , 1 2, 0    are integers. We assume the following conditions: 

 1A  0iq   and  

0

( ) , 1,2i

s n

sq n i




     

 2A  There exists a function 
2

0( ) ([ , ), )E n C n R   such that 
2( ( )) ( )E n e n   and  

          
lim ( ) .n E n M R    

 The nonoscillatory behavior of linear and nonlinear neutral delay difference and differential equations with 

positive and negative coefficients have been investigated by several authors, see, for example [3], [4], [5], [6], [7], 

[8] and [9], the references cited therein. We refer monographs [1] and [2] for good amount of discussion concerning 

the existence of solution of delay difference equations. Our aim in this paper is to establish the nonoscillation criteria 

for the second order linear neutral delay difference equation (1) for various ranges of ( )p n  

As is customary, a solution of equation (1) is said to be nonoscillatory if it is eventually positive or 

eventually negative. Otherwise, it will be called oscillatory. We define  1 2max{ , , }     

Theorem1.1. (Banach’s Contraction Principle [2]). Let ( X ,d) be a complete metric space and let T  be a 

contraction mapping on X . Then T  has exactly one fixed point on X , that is, there exists exactly one x X  

such that Tx x   
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2. Main Results 

Theorem 2.2. Suppose that conditions  1A and  2A  hold and that there exists a constant 
1p such that  

  10 1. (2)p n p  
 

Then equation (1) has a nonoscillatory solution. 

Proof.  Suppose (2) holds.  Choose constants 
1 1 0N M   and choose 1 0 ,n n    sufficiently large such that 

   
 

 

   

   

   

1

1

1

1

1 2

1 1
1

1

1 1 1
2

1

1

3 1
, 3

4

1
, 4

1 (1 2 ) 2
5

2

1
. 6

4

s n

s n

s n

p
s q s q s

p N
s q s

N

p N M
s q s and

N

p
E n M














   

 


  



 







 

Let X be the set of all continuous and bounded functions on 0[ , )n  with the sup norm. Define 

  1 1 1 0: , .A x X M x n N n n      

Define a mapping 1 1:T A X as follows: 

 
 

 

 
1

1

1 1 2 2
1

1

1 1 2 2 1

1 1 0 1

3 1
( )

4

1 [ ( ) ( ) ( ) ( )]( )( )

[ ( ) ( ) ( ) ( )] ,

( )( ), .

s n

n

s n

p
p n x n

n q s x s q s x sT x n

s q s x s q s x s E n M n n

T x n n n n



 

 









 
 


     

      
  





 

 

Clearly, 1T x  is continuous. For every 1x A and 1n n using (4) and (6), we obtain   

                                                    
1

1 1 1 1 11 .
s n

T x n p N sq s N




   
 

Furthermore, in view of (5) and (6), we have 

    
1

1
1 1 1 1 2 1

1
.

2 s n

p
T x n p N N sq s M






     
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Thus we proved that 1 1 1.T A A  Since 1A  is a bounded, closed and convex subset of X , we have to prove that 1T  

is a contraction mapping on 1A  to apply the contraction principle. 

Now, for 1 2 1,x x A  and 1n n , in view of (3), we have 

         
1

1 1 1 2 1 2 1 1 2

1
1 2

1 1 2

3

4

.

s n

T x n T x n x x p s q s q s

p
x x

x x





  
       

  


 

 



 

This implies that 1 1 1 2 1 1 2 1, 1.T x T x x x      This proves that 1T  is a contraction mapping on 1A .  1T  has 

the unique fixed point ,x  which is obviously a positive solution equation (1).  This completes the proof. 

Theorem 2.2.  Suppose that conditions  1A and  2A  hold and that there exists a constant 2p such that 

 21 0. (7)p p n    
 

Then equation (1) has a nonoscillatory solution. 

Proof.  Suppose (7) holds.  Choose constants 2 2 0N M   and choose 1 0 ,n n    sufficiently large such that 

   
 

 

 
  

 

 
 

 

   

1

1

1

2

1 2

2 2

1

2

2 2

2

2

2

3 1
, 8

4

1 1
, 9

1 2
10

1
. 11

4

s n

s n

s n

p
s q s q s

p N
s q s

N

p M
s q s and

N

p
E n M














   

 


 



 







 

Let X be the set as in theorem 1. Define 

  2 2 2 0: , .A x X M x n N n n      

Define a mapping 2 2:T A X as follows: 
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 
 

 

 
1

2

1 1 2 2
2

1

1 1 2 2 1

2 1 0 1

3 1
( )

4

1 [ ( ) ( ) ( ) ( )]( )( )

[ ( ) ( ) ( ) ( )] ,

( )( ), .

s n

n

s n

p
p n x n

n q s x s q s x sT x n

s q s x s q s x s E n M n n

T x n n n n



 

 









 
 


     

      
  





 

Clearly, 2T x  is continuous. For every 
2x A  and 1n n  using (9) and (11), we obtain 

    
1

2 2 2 2 2 1

2 1

1

, .

s n

T x n p p N N sq s

N n n





   

 


 

Furthermore, in view of (10) and (11), we have 

    
1

2
2 2 2

2 1

1

2

, .

s n

p
T x n N sq s

M n n






 

 


 

Thus we proved that 2 2 2.T A A  Since 2A  is a bounded, closed and convex subset of X , we have to prove that 

2T  is a contraction mapping on 2A  to apply the contraction principle. 

Now, for 1 2 2,x x A  and 1n n , in view of (8), we have 

         
1

2 1 2 2 2 1 2 1 2 1 2

2
1 2

2 1 2

3

4

.

s n

T x n T x n p x x x x s q s q s

p
x x

x x





       


 

 



 

This implies that 2 1 2 2 2 1 2 2, 1.T x T x x x      This proves that 2T  is a contraction mapping on 2A . 

Consequently 2T  has the unique fixed point ,x which is obviously a positive solution of equation (1). This 

completes the proof. 

Theorem 2.3. Suppose that conditions ( 1)A  and ( 2)A  hold and that there exist constants 1p         and 2p  such 

that  

  2 11 (12)p p n p        

Then equation (1)  has a non oscillatory solution. 
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Proof. Suppose that (12)  holds. Choose constants
 3 3 0N M   and choose 1 0n n    sufficiently large such 

that  

                                               

1

1

1

2
1 2

2 3
1

3

2 2 1 3 2 3
2

1 3

2

3( 1)
[ ( ) ( )] , (13)

4

1 (1 )
( ) , (14)

( 1) 2 ( )
( ) (15)

2

1
( ) . (16)

4

s n

s n

s n

p
s q s q s

p N
sq s

N

p p p N p M
sq s and

p N

p
E n M














 

 


  



 







 

Let X  be the set as in Theorem 1.  Define  

 3 3 3 0: ( ) , .A x X M x n N n n      

Define a mapping 3 3:T A X  as follows:  

 

1

2

1 1 2 2

3

1

1 1 2 2 1

3 1 0 1

3 1 ( )

4 ( ) ( )

1
[ ( ) ( ) ( ) ( )]

( )( ) ( )

1 ( )
[ ( ) ( ) ( ) ( )] ,

( ) ( )

( )( ),

s n

n

s n

p x n

p n p n

n
q s x s q s x s

T x n p n

E n M
s q s x s q s x s n n

p n p n

T x n n n n







 


 




 

 



 

 



 


 
  
   

 
  
     

 
  





 

Clearly, 3T x  is continuous. For every 3x A  and 1n n  using (14)
 
and (16) , we get 

1

3
3 1

2 2

1
( )( ) 1 ( )

s n

N
T x n sq s

p p





     

3 1, .N n n   

Furthermore in view of (15) and (16), we have 

1

3 32
3 2

1 2 2

1
( )( ) ( )

2 s n

N Np
T x n sq s

p p p






     

            3 1,M n n   
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Thus we proved that 3 3 3T A A . Since 
3A  is a bounded, closed and convex subset of X  we have to prove that 3T  

is a contraction mapping on 
3A  to apply the contraction principle. 

Now, for 1 2 3,x x A  and 1n n , where in view of (13) , we obtain 

1

3 1 3 2 1 2 1 2

2

2
1 2

2

3 1 2

1
( ) ( ) ( )( ) | || || 1 [ ( ) ( )]

3 1
|| ||

4

|| || .

s n

T x n T x n x x s q s q s
p

p
x x

p

x x





  
     

  


 

 



 

This implies that 3 1 3 2 3 1 2|| || || ||T x T x x x   , we have 3 1.  This proves that 3T  is  

contraction mapping on 3A . Consequently 3T  has the unique fixed point x X , which is                             

obviously a positive solution of equation (1) . This completes the proof. 

Theorem 2.4. Suppose that the conditions ( 1)A  and ( 2)A  hold and that there exist constants 1p  and 2p  such 

that  

2 1( ) 1. (17)p p n p         

Then equation (1) has a nonoscillatory solution. 

Proof. Suppose (17)  holds, Choose constants 4 4 0N M   and choose 1 0 ,n n    sufficiently large such 

that 

1

1
1 2

3( 1)
[ ( ) ( )] , (18)

4s n

p
s q s q s






   

1

2 1 4 2
1

2 4

(1 )( 1)
( ) , (19)

s n

p p M p
sq s

p N





  
  

1

4 1 1
2

4

( 1)
( ) (20)

s n

N p p
sq s and

N





 
  

1( ) 1 (21)E n M p    

Let X be the set as in theorem 1. Define 

 4 4 4 0: ( ) , .A x X M x n N n n    
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Define a mapping 4 4:T A X  as follows: 

1

1 1 2 2

4

1

1 1 2 2 1

4 1 0 1

1 ( )

( ) ( )

1
[ ( ) ( ) ( ) ( )]

( )( )( )

1 ( )
[ ( ) ( ) ( ) ( )] ,

( ) ( )

( )( ), .

s n

n

s n

x n

p n p n

n
q s x s q s x s

p nT x n

E n M
s q s x s q s x s n n

p n p n

T x n n n n







 


 




 

 



 

 




   


 
   

 
  
     

 
  





 

Clearly, 4T x  is continuous. For every 4x A  and 1n n  using (20)  and (21),  we obtain 

1

1

4 2 2

4 4 1
2

1 1 1

4, 1

1 ( ) 1 ( )
( )( ) ( ) ( )

( ) ( ) ( )

1 1
( )

.

s n

s n

x n E n M
T x n sq s x s

p n p n p n

N N p
sq s

p p p

N n n

 


  









    
     

   

 
  

 



  

Furthermore in view of (19)  and (20)  we have  

1

4 1 1

1 ( ) 1 ( )
( )( ) ( ) ( )

( ) ( ) ( )s n

x n E n M
T x n sq s x s

p n p n p n

 


  





    
     

   


 

    

1

4 4 1
1

2 1 1

4 1

1 1
( )

.

s n

M N p
sq s

p p p

M n n





 
  

 


 

Thus we proved that 4 4 4.T A A Since 4A  is a bounded, closed and convex subset of X , we have to prove that 

4T  is a contraction mapping on 4A  to apply the contraction principle. 

Now, for 1 2 4,x x A and 1n n , in view of (18) , we have 

1

4 1 4 2 1 2 1 2

1

1
1 2

1

4 1 2

1
( ) ( ) ( )( ) | || || 1 [ ( ) ( )]

3 1
|| ||

4

|| || .

s n

T x n T x n x x s q s q s
p

p
x x

p

x x





  
     

  


 

 



 

This implies that 4 1 4 2 4 1 2|| || || ||T x T x x x   , we get 4 1. 
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This proves that 4T  is contraction mapping on 4A . 4T  has the unique fixed point x X , which is                             

obviously a positive solution of equation (1) . This completes the proof. 

Example 2.5. Consider the second order delay difference equation 

2 2( ( ) ( 1)) 2 ( 1) ( 1) ( ), (22)n n nx n e x n e x n e x n e n            

where 
2 2 1 2 3

1 2( ) , ( ) 2 , ( ) , ( ) 2n n n n n n np n e q n e q n e e n e e e e                  such that  

0 ( ) 1.np n e  
 
Since ( ) 0E n  as ,n

1
1( )

s n
sq n




   and 

1
2( ) .

s n
sq n




 

 
Then the  

sufficient conditions of Theorem 2.1  are satisfied. Therefore, the equation (22)  has a positive  

solution.   

 

Figure 1 

                In Figure 1, the Nonoscillatory nature of equation (22)  can be seen easily. 

Example 2.6 . Consider the second order delay difference equation. 

2 2( ( ) (1 ) ( 1)) ( 1) 2 ( 1) ( ), (23)n n nx n e x n e x n e x n e n           
 

Where 
2 2 1 1 2 3

1 2( ) 1 , ( ) , ( ) 2 , ( ) 3 3n n n n n n n np n e q n e q n e e n e e e e e                     
 

such that ( ) 1.p n    Since ( ) 0E n 
 
as ,n

1
1( )

s n
sq n




   and 

1
2( ) .

s n
sq n




 

 
Then the 

sufficient conditions of Theorem 2.4  are satisfied. Therefore, the equation (23)  has a positive solution. 
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Figure 2 

In Figure 2, the Nonoscillatory nature of equation (23)  can be seen easily. 
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