
Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

967 | P a g e  

 

Improved Performance of Advance Encryption Standard using 

Parallel Computing 
 

Vishal Pachori*, Gunjan Ansari**, Neha Chaudhary***  
 

*(Department of Computer Science, JSSATE, Noida, UPTU, India) 

** (Department of Computer Science, JSSATE, Noida, UPTU,India) 

*** (Department of Computer Science, JSSATE, Noida, UPTU,India) 

 

 

ABSTRACT 
This paper presents the implementation of Advance 

encryption (AES) algorithm using parallel computing. 

Most of the research for improving performance of 

AES is based on hardware implementation. This 

paper presents the parallel implementation of AES 

using JPPF (Java Parallel Programming Framework) 

which provides flexibility & performance 

improvement in terms of speed-up. In this 

implementation there are two approaches data 

parallelism and control parallelism. In Data 

parallelism, xn plain text is taken where x is 128 bits 

and n is any integer. Further xn data will be divided 

into n parts and each part will be send to independent 

processing units. Value of n can be increased 

depending on processing units available. In control 

parallelism, four round functions of AES Subbyte , 

ShiftRow , Mixcolumn. AddroundKey are divided 

into two independent parts for which structure of 

round functions has been modified. These two 

independent parts are assigned to different processing 

units and these processing units will exchange their 

intermediate result for further processing. Finally, 

results are conducted on single processing unit and 

multiple processing units on different sets of 256 bits 

of data and the performance analysis shows 

improvement in terms of execution time. 

Keywords – AES, Data Parallelism Control 

Parallelism, Parallel computing 

1 INTRODUCTION 

For the protection of data transmission over insecure 

channels two types of cryptographic systems are used: 

Symmetric and Asymmetric cryptosystems[1]. 

Symmetric cryptosystems such as Data Encryption 

Standard (DES) and Advanced Encryption Standard 

(AES) uses an identical key for both to encrypt the plain 

text and decrypt the cipher text. Asymmetric 

cryptosystems such as Rivest-Shamir-Adleman (RSA) & 

Elliptic Curve Cryptosystem (ECC) uses different keys  

 

 

 

for encryption and decryption.Symmetric cryptosystem 

is more suitable to encrypt large amount of data with 

high speed. 

To replace the old Data Encryption Standard, in Sept 12 

of 1997, the National Institute of Standard Technology 

(NIST) required proposals to what was called Advanced 

Encryption Standard (AES)[2]. Many algorithms were 

presented originally with researches from 12 different 

nations. On October 2nd 2000, NIST has announced the 

Rijndael algorithm is the best in security, performance, 

efficiency, implement ability, & flexibility. The Rijndael 

algorithm was developed by Joan Daemen of Proton 

World International and Vincent Rijmen of Katholieke 

University at Leuven. It became effective as a Federal 

government standard on May 26, 2002 after approval by 

the Secretary of Commerce. It is available in many 

different encryption packages. AES is the first publicly 

accessible and open cipher approved by the National 

Security Agency (NSA) for top secret information. So, it 

has broad applications, such as smart cards and cell 

phones, WWW servers and automated teller machines, 

and digital video recorders. Numerous architectures have 

been proposed for the hardware implementations of the 

AES algorithm. 

2 AES ALGORITHM 

AES, i.e. Rijndael algorithm is a symmetric key 

cryptography. In 1998 Rijndael cipher developed by the 

two Belgian cryptographers, John Daemen and Vincent 

Rijmen was published. This cipher was selected later on 

by the NIST as the Advanced Encryption Standard to 

supersede the old Data Encryption Standard. The AES 

standard has a constant block size of 128 bits with 3 

different key sizes of 128 bits, 192 bits and 256 bits, 

where 10, 12 and 14 encryption rounds will be applied for 

each key size, respectively. During the encryption and 

decryption processes, the 16 bytes of data will form a 

changeable (4*4) array called the state array. During the 

encryption process, the state array consists initially of the 

input data, this array will keep changing until reaching 

the final enciphered data. In the decryption process the 



Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

968 | P a g e  

 

state array will start by the enciphered data and will keep 

changing until retrieving the original data. The encryption 

of AES is carried out in blocks with a fixed block size of 

128 bits each. The AES cipher calculation is specified as 

a number of repetitions of transformation rounds that 

convert the input plaintext into the final output of cipher 

text. Each round consists of several processing steps, 

including one that depends on the encryption key. A set 

of reverse rounds are applied to transform the cipher text 

back into the original plaintext using the same encryption 

key.  

 

figure 1 AES Cipher 

3 RELATED PREVIOUS WORK 

Various attempts are made to increase the performance of 

AES algorithm as it is widely used, some of them are as 

follows:- 

  In March 11, 2010, Piotr Bilski et al (2010), proposed 

“The multi-core implementation of the symmetric 

cryptography algorithms in the measurement system [1]. 

They proposed three different approaches of 

implementing AES algorithm on different processors. 

The first modification of the original algorithm does not 

require any changes in the algorithm itself. The procedure 

involves dividing the input, plaintext bytes into blocks 

that can be encrypted and decrypted independently. This 

way multiple blocks can be processed simultaneously. 

The first operation here is separating the plain text or 

cipher blocks into independent streams and then applying 

the AES encryption or decryption procedures. The 

expected increase of the computational efficiency 

depends on the number of the applied copies of the 

procedure, determined by the number of the processing 

units (processors or cores). The second modification is 

more efficient approach as the modification made inside 

the algorithm to make every subprocedure inside the AES 

schedule to be able to run on the independent processor 

cores. This might also be necessary when the plain text or 

cipher blocks are processed in relation to the values 

obtained in the previous iterations. . The decryption and 

key expansion algorithms are performed analogously. 

Note that the parallelism of the whole scheme requires 

firstly row, then column operations. Firstly, the steps of 

the algorithms that are in a sequence can not be modified 

to be run simultaneously, as their results depend on the 

results obtained from the preceding operations. Therefore, 

the steps inside the „„for” loop (SubBytes, ShiftRows, 

MixColumns and AddRoundKey) must be processed 

sequentially, and no concurrent execution is possible. 

However, the analysis of the operations inside of these 

steps shows that the matrix operations can be broken into 

independent parts. The SubBytes and ShiftRows are the 

operations that transform the individual rows in the state 

array – each row can be processed separately. Moreover, 

as these operations are put one after another in the 

algorithm, there is no need to treat them as the separate 

subprocedures. They can be used inside one program 

function. Similarly, MixColumns and AddRoundKey can 

be decomposed into the simultaneously processed parts, 

but this time the latter operate on columns. Third 

approach depend upon modes of operation of AES 

algorithm. As the AES algorithm is the public key 

system, it is vulnerable to the mode of the operation. As 

all data are processed using the same key, identical 

plaintexts will be transformed into identical ciphers. This 

might facilitate the intruder to obtain useful information 

about the transmitted data without breaking the cipher. 

Therefore it is important to incorporate into the system 

block processing modes. To increase security of the 

encryption and decryption operations, the dependency 

between the subsequent data blocks must be introduced. 

The most popular safe modes that can be used in the MS 

are Cipher-Block Chaining (CBC), Propagating Cipher-

Block Chaining (PCBC) and Cipher Feedback (CFB). 

The modification of all three safe modes includes 

separating them into independent streams. Limitations of 



Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

969 | P a g e  

 

the proposed solution lie in the computer configuration, 

although it also relies on the specific software (Lab 

VIEW environment and RTOS). It is possible to make 

this implementation in other environments which are 

more efficient (such as Agilent VEE), or generic 

programming language and use library other then 

CRYPTO-G library. 

   Hua li et al (2008), proposed “A new compact dual-

core architecture for AES encryption and decryption” in 

which they present a new compact architecture, 

consisting of two independent cores that process 

encryption and decryption simultaneously [3]. They 

unroll one iterative round loop with a 32-bit data path, 

which means that four clock cycles are required to 

complete one transformation round of a 128-bit block of 

data. They also present a new method for implementing 

ShiftRows/InvShiftRows, which are critical operations 

that directly affect the architecture of the compact 32-bit 

data path design. In addition, a compact key generation 

unit that generates subkeys for encryption and decryption 

on the fly is proposed. The proposed architecture can be 

easily extended to 192- and 256-bit cipher key 

implementations. . This approach is useful when both 

plaintext and cipher text is available to process as in the 

case of real time server. The architecture is based mainly 

on new optimized ShiftRows and InvShiftRows 

operations which avoid complex multiplexers and reduce 

the critical path of the design. The compact 

implementation can perform encryption and decryption in 

parallel, and it is most suitable for applications such as 

real-time dual-duplex wireless communication.  In this 

approach, both hardware and software both needs to be 

modified. So, this approach is not cost effective and it can 

be used only where there is large amount of data for 

encryption and decryption both.    

4 THE AES MODIFICATION  

To improve the performance of AES algorithm using 

parallel computing there are two major approaches 

DATA Parallelism and Control Parallelism. 

     In Data Parallelism the data is divided into more than 

one part and send different part to different nodes for 

execution. Each node is executing the same procedure or 

function but on different data. This approach is very 

effective when there is large data to process. AES can be 

implemented in the following manner using DATA 

parallelism.  Server sends Plaintext with the Key on node 

1 and it will compute the cipher text by running the AES 

algorithm and finally sends the result back to the Server. 

Node 2 follows the same procedure as shown in Fig. 2. 

The number of nodes can be increased according to our 

requirement and number of processing units available. 

This approach is implemented using JPPF framework by 

passing different data sets to different JPPF nodes (node 1 

and node 2).  

 

figure 2 Data Parallelism 

     In Control Parallelism the operation or function is 

divided instead of data. The different operation or 

function is assigned to different nodes and then finally the 

output is send to the server for final processing, as shown 

in Fig 3. Although it is less scalable then data parallelism 

but more speed up can be achieved by this approach. 

 

figure 3 Control Parallelism 

Here, 

Operation 1 = combination of (SubByte and Shiftrow 

operation) 

Operation 2 = combination of (Mixcolumn and Addround 

key) 

     In control parallelism approach, the four main operations 

in AES algorithm are divided into two parts and combination 

of these operations is Operation 1 and Operation 2. Node 1 

will execute only operation 1 and Node 2 will perform only 

operation 2. Nodes will communicate the result of each other 

when needed.  

     The Fig. 3 is System architecture of control parallelism 

approach. It shows the entire process of proposed control 

parallelism approach.      

     In this approach first of all Server fetches Plaintext (or 

message to encrypt) and round key from two different files 

then server will perform the initial function which is Add 

Round Key in which server simply e-xor the plaintext with 

Server 

Operation 1(Node 1) Operation 2(node 2) 

Server 

Server 

AES(node 1) AES(node 2) 

Server 



Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

970 | P a g e  

 

the input round key. Then server divides the resultant into 
two parts ,say A and B, and sends these parts to Node 1(First 

processing unit) then Node 1 will perform operation 1 which 

is combination of two round functions namely SubByte and 

Shiftrow on data set A and then Node 1 will send its 

computed result to Node 2 (second processing unit). 

Node 2 will perform the operation 2 which is combination of 

other two round functions namely Mixcolumn and Addround 

key on data set A at the same time Node 1 is performing 

operation 1 on data set B. Then Node 2 and Node 1 will 

exchange their result and both wait for other processing unit 

to compute the result.  

 figure 4 Proposed AES Modification 

As operation 1 and operation 2 approximately takes equal 

time to execute so the waiting time is negligible. At the same 

time, Node 1 will perform operation 1 and Node 2 will 

perform operation 2 on different data sets and then they 

exchange their results and this process is repeated (Nr - 1) 

times where Nr is number of rounds. The value of Nr will 

depend upon the length of the input key for 128bit key the 

value of Nr is 10. Then, Node 2 will send the computed data 

after (Nr -1) rounds to the server and server will combine 

that computed data. 

Finally, server will perform the last round which contains 

SubByte, ShiftRow and AddRoundKey round function. 

These Operations are performed on server because if the 

data is sent to Node 1 and it will compute the last round then 

it will increase the overall execution time so it‟s better to 

execute it on the server as these operations are performed 

serially so there is no need to send data to other processing 

unit and it will save the communication time or delay.  

5 IMPLEMENTATION 

Both the approach can be implemented using JAVA Parallel 

Programming Framework (JPPF). JPPF works on any 

system that supports Java[5]. There is no operating system 

requirement; it can be installed on all flavors of UNIX, 

Linux, Windows, Mac OS, and other systems such as zOS or 

other mainframe systems. A JPPF grid is made of three 

different types of components that communicate together:  

 clients are entry points to the grid and enable 

 developers to submit work via the client APIs  

 servers are the components that receive work 

 from the clients, dispatch it to the nodes, receive 

 the results fom the nodes, and send these results 

 back  to the clients  

 nodes perform the actual work execution  

To understand how the work is distributed in a JPPF grid, 

and what role is played by each component, the following 

two units of work that JPPF handles should be defined.  

A task is the smallest unit of work that can be handled in the 

grid. From the JPPF perspective, it is considered atomic.  

A job is a logical grouping of tasks that are submitted 

together, and may define a common service level agreement 

(SLA) with the JPPF grid.  

For establishing communication between nodes “Hazelcast” 

Framework is used. Hazelcast framework is used only to 

create a distributed data structure on which node 1 and node 

2 can communicate by putting their computed value. 

The Data parallelism approach can be written as: 

AES (data parallelism) 

Initial Condition: Plain Text (p bits) and key (k bits) where 

p is multiple of 128 and n number of processors 



Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

971 | P a g e  

 

 Final Condition: p bits of encrypted text (cipher text) 

Begin: 

Spawn (P0, P1 …….…PN-1)  

For all Pi where 0< i <n-1 

Ai = Plaintext [(i*128), (i*128) + 1, (i*128) +2… 

(i*128)+127] 

Call AES(Ai , k) 

End for 

End 

The Control Parallelism approach can be written as: 

Initial Condition: Plain Text (p bits) and key (k bits) 

where p is multiple of 128 and n number of processors 

 Final Condition: p bits of encrypted text (cipher text) 

Begin: 

Spawn (P0, P1) 

A0 = PlainText [0,127] 

A1 = PlainText [127,255] 

For all Pi, 0<= I <= 1 

For j = 0 to 9 

 Call Operation1 on Ai  

 Wait for Operation1 to complete  

 Call Operation 2 on Ai 

End for 

 Call LastRound on [A0 + A1 ] 

End for 

End 

Here, 

 Last Round contains SubByte , ShiftRow and 

AddroundKey Operation as shown in Fig. 1.  

6 PERFORMANCE ANALYSIS 

The performance of proposed architechture is measured 

in terms of execution time. The performance is measured 

on 256 bits of data and on two nodes or processing units. 

The following Table gives the execution time of 

converting 256 bits plain text into cipher text on JPPF 

framework using two nodes. The time taken by single 

core to encrypt 256 bits of data is 14, 15 and 13 seconds 

in different run. The time taken by the 1st run is more 

than the time taken in the subsequent run because in the 

first run the Hazelcast Framework is loaded which takes 

time to load. In the subsequent runs the time taken by the 

modified AES algorithm is almost same i.e. execution 

time gets stable. Speed up of the modified AES algorithm 

is shown below. 

The configuration of the system on which these results 

are taken is as follows:  

Processor: Intel Core(TM)2Duo E7300@ 2.66 Ghz 3MB 

L2 cache memory  

Ram: 2GB 

Speed Up = (Time taken by the serial algorithm) / (Time 

Taken by the Parallelism algorithm) 

Speed up For Data Parallelism for 256 bits of Data: 

Speed up for Data parallelism (1st run) = 15/10 = 1.5 

Speed up for Data parallelism (2nd run) = 14/7 = 2.0 

Speed up for Data parallelism (3rd run) = 13/6 = 2.16 

Speed up for Data parallelism (4th run) = 13/7 = 1.85 

Speed up For Data Parallelism for 256 bits of Data: 

Speed up for Control parallelism (1st run) = 15/11 = 1.36 

Speed up for Control parallelism (2nd run) = 14/7 = 2.0 

Speed up for Control parallelism (3rd run) = 13/6 = 2.16 

Speed up for Control parallelism (4th run) = 13/6 = 2.16 

 Data 

Parallelism 

(Seconds) 

Control 

Parallelism(Sec) 

1
st
 Run 10 11 

2
nd

 Run 7 7 

3
rd

 Run 6 6 

4
th

 Run 7 6 



Vishal Pachori, Gunjan Ansari, Neha Chaudhary / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622  www.ijera.com 

       Vol. 2, Issue 1,Jan-Feb 2012, pp.967-971 

972 | P a g e  

 

 

 

7 CONCLUSION 

Both the proposed approach of AES algorithm is 

successfully implemented in JPPF framework and 

performance is measured in terms of execution time. It 

can be seen that the experiment shows a significant 

improvement in terms of execution time. For the Future 

work other cryptography algorithm can also be 

implemented using parallel computing in order to 

increase their performance. In this paper, AES is 

implemented using JPPF framework it can also be 

implemented using other fast framework available. The 

network traffic can affect the performance of this 

implementation. 

REFERENCES 

[1] Piotr Bilski , Wiesław Winiecki, 2010 ,Multi-core 

implementation of the symmetric cryptography 

algorithms in the measurement system, Measurement 

43 (2010) 1049–1060, Elsevier. 

10.1016/j.measurement.2010.03.002 

[2] Behrouz A. Forouzan, De Anza College 

Cryptography and Network Security (McGraw-

Hill,2007 ) 

[3] Hua li and Jianzhou li 2008  proposed, A new 

compact dual-core architecture for AES encryption 

and decryption ,Lethbridge,Alberta. Electrical and 

Computer Engineering, Canadian Journal .  

10.1109/CJECE.2008.4721627 

[4] Zhiyong Guo, Guangjun Li, Yang Liu,2010, 

Dynamic Reconfigurable Implementations of AES 

Algorithm Based on Pipeline and Parallel 

Structure,China. Computer Engineering and 

Technology (ICCET), 

10.1109/ICCAE.2010.5451864. 

[5] Online forum of JPPF Team available at: http:// 

www.jppf.org/forum.       


