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))(( GAutZ when  pGZ )( . 
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I.  INTRODUCTION  

      In this paper G  is a group and p denotes prime number. The center of a group G, denoted Z(G) and 

automorphism group of G  denoted by )(GAut . We first give preliminary information and then we characterize 

order center of )(GAut  when pGZ )( . 

II. PRELIMINARY  RESULTS  

 

     Definition 2.1:  Let G  be a group. The set of elements that commute with every element of G called the 

center of G  and denoted by Z(G)  . On the other hand,  

 GggzzgGzGZ  ,|)(  

For GH  , we define the centrlizer of H  in G  to be  HhhgghGgHCG  ,|)( , then 

GHCGZ G  )()(
. 

     Definition 2.2:  Suppose that Ggx ,  and write xggx g 1 , this element is called the conjugate of 

x  by g . 

     Definition 2.3. If G  is a group, an automorphism of G  is an isomorphism from G  toG . The set of 

automorphisms of G  is denoted by  )(GAut .   

 

     Theorem 2.4: :  If  H  act on K . Then, to each Hh  there corresponds a map KKh : , 

defined by 
h

h kk : , and this is an automorphism of K .Moreover, the map )(: KAutH  , 

defined by hh  :  is a homomorphism. 

     Proof: See [3-7] theorem 9.3. 

III. MAIN THEOREM 

 

    Main Theorem :  If G  is a group with  pGZ )( , then  IGAutZ pp )1())(( . 

http://en.wikipedia.org/wiki/Group_%28mathematics%29
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Commutative
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    Proof:  Let ))(( GAutZ  then  gg   for all Gg , where 
g

g

xx

GG



:
. Now we 

have  

  eggxxxxxxxxx gggggg

gg   1)()( )(),()()()()()()())(())((
1

 

 

for all Ggx , , but GG )(  so     eggGggG   11 )(),()(,   i.e )()( 1 GZgg   

for all Gg . 

Let ))(( GAutZ be fix and  )()()( 1 GZggg    for all Gg , we have  

)()()()()()()()())(()( 11111 yxyxxxyxxyyxxyxyxy   
 

for all Gyx , . Therefore 
1)(

:




ggg

GG






 is a homomorphism. 

By the above )()( ggg   ,  Gg , now by induction we can prove that  
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If p is a prime and pGZ )(  then  
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 Hence )()( )()( ggg pp   , [notice that )]()(),...,( )1( GZgg p  . We want to prove 

ggpp  )())1((  for all  Gg . 

Let Gg  then we have three state: 

i) If  eg )(  then gg )( , so ggpp  )())1(( . 
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ii) If  eg )(2  then 
2)2(22 )()()()( gggggg    and by using induction we can 

prove that 
kk ggg )()()(    for each k . Let pk  , then gggg pp  )()()(  , hence 

ggpp  )())1(( . 

iii) In this state eg )(  and eg )()2( . Let )()( GZag   then 
iag )()2(  for some 

11  pi , again we can prove inductively 
1

)()( 


kik ag , so 

)()(
1)( gaag

pip  


 and )()()()( )()( gggggg pp   , and again 

ggp  )()1( , so ggpp  )())1(( . 

                    The above statements deduce Igpp  )())1((  for every  ))(( GAutZ , therefore 

 IGAutZ pp )1())((  

                      as required.  

 

 

IV. CONCLUSION 
 

In this paper we have proved a theorem on order of ))(( GAutZ when pGZ )( . Our results are in fair 

agreement with other theoretical results reported by other research groups. 
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