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Abstract-  
The theory of compressed sensing (or compressive 

sampling, CS for short) indicates if a signal is 

sparse or compressible in a certain transform 

domain, the transformed higher-dimensional 

signal can be projected onto a lower dimensional 

space by a measurement matrix, which is 

uncorrelated with the transform basis, and then 

the signal can be accurately reconstructed by 

solving the convex optimization problem in 

accordance with a small amount of measured 

values. The algorithm proposed in this paper 

combines compressed sensing theory with wavelet 

packet analysis, which first decomposes the 

original image with the wavelet packet to make it 

sparse, and then retains the low frequency 

coefficients in line with the optimal basis of the 

wavelet packet, meanwhile, makes random 

measurements of all the high frequency 

coefficients according to the compressed sensing 

theory, and last restores them with the orthogonal 

matching pursuit (OMP) method, and does the 

inverse transform of the wavelet packet to 

reconstruct the original image, to achieve the 

image compression. The simulation results 

demonstrate this algorithm of simpleness and high 

efficiency, with the better reconstructed image 

quality, is superior to the other two image 

compression algorithms also based on the 

compressed sensing theory. 
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I. INTRODUCTION 

In the traditional signal processing, the signal 

conversion from analog to digital has been strictly in 

compliance with the Nyquist sampling theorem, 

which indicates that the sampling rate must at least 

reach twice greater than the signal bandwidth in order  

 

to accurately reconstruct the original signal. With the 

increasing capacity of sensor systems for data, the  

 

 

growing amount of data needs to be handled, which 

presents higher requirements for the ability of signal 

processing, and brings great challenges to the 

corresponding hardware devices. In practice, signals 

are often sampled at a high rate and compressed 

afterwards so as to reduce the costs of storage, 

processing and Transmission, which wastes a lot of 

sampling resources. The theory makes full use of the 

signal sparsity or compressibility to fulfill the signal 

acquisition, encoding and decoding. CS indicates that 

if a signal is sparse or compressible in a certain 

transform domain, the signal can be exactly or 

approximately reconstructed by acquiring a small 

amount of the signal projection values, that is, the 

signal sampling and compression encoding are 

achieved in the same step, with non-adaptive 

measurement encoding on the signal at a rate far 

below the Nyquist sampling rate, converting from 

sampling the signal itself to sampling the information 

contained in the signal. The signal codec framework 

based on CS is quite different to that based on 

traditional theories, which greatly reduces the signal 

sampling rate, signal processing time, data storage 

and transmission costs, leading signal processing into 

a new revolutionary era. Wavelet analysis of good 

time-frequency characteristics widely used in the 

image compression field has become one of the 

mainstream technologies, which has the high 

decorrelation and energy compression efficiency, and 

can effectively remove the blocking effect and 

mosquito noise. However, wavelet transform only 

decomposes the low-frequency sub-band level by 

level, which is prone to loss of the image detailed 

information with a high compression ratio, 

deteriorating the reconstructed image quality. 

Wavelet packet analysis is an extension of wavelet 

analysis. Compared with wavelet transform, wavelet 

packet transform provides a more sophisticated 

analysis method for the signal frequency band, which 

is partitioned with multilevel divisions. High-

frequency sub-bands without subdivisions in the 

multi-resolution analysis are further decomposed to 

increase the frequency resolution. Wavelet packet 
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analysis can also adaptively select the appropriate 

frequency band according to the characteristics of the 

analyzed signal to match the signal so as to increase 

the time-frequency resolution. The algorithm 

proposed in this paper combines compressed sensing 

theory with wavelet packet analysis, which first 

decomposes the original image with the wavelet 

packet to make it sparse, and then retains the low-

frequency coefficients in line with the optimal basis 

of the wavelet packet, meanwhile, makes 

measurement encoding on all the high-frequency 

coefficients in accordance with the compressed 

sensing theory, and last restores them with the 

orthogonal matching pursuit (OMP) method, and 

does the wavelet packet inverse transform to 

reconstruct the original image, to accomplish the 

image compression. 

 

II.   THE ALGORITHM PRINCIPLE 

A. Compressed Sensing Theory 

 

If xR
N×1 

is a one-dimensional signal, it can be 

expanded by a group of orthogonal basis (e.g., 

wavelet packet basis) 1 2{ , ,...., },N     i.e. 

 

1

N

k k

k

x y y


      (1) 

Where ,k ky x    , whose inverse transform is 

Hx y   and
H H I    , therein     

 C
N×N

, and I is the identity matrix. When the 

expansion of x  only contains the number of    K<< 

N nonzero coefficients yk on the basis of , define 

  as the sparse basis of x . 

 Generally, the signal itself is not sparse, but 

its coefficients by a certain transformation can be 

considered sparse. For example, implement wavelet 

packet transform to the signal x  , then retain the 

number of K larger components of its coefficients, 

while, set the other N - K components (which make 

much less constructions to the signal reconstruction) 

zeros, and execute wavelet packet inverse transform 

to reconstruct the approximate signal. In this manner, 

the signal x can be considered as of K-sparsity on the 

wavelet packet basis of . 

Towards the signal x , project it onto a group of 

measurement vectors 1 2{ , ,..., }M    , and 

obtain its M linear measurement, i.e. 

 s x    (2) 

Where
M NR  , and each line of    can be 

regarded as a sensor, which multiplies the signal x  

and picks up a part of its information. In accordance 

with the M measurements s and 

vectors , the original signal can be reconstructed. 

With the substitution of Equation (1) into 

Equation (2), deduce the following equation 

s y y    (3) 

Where   is a M×N matrix. 

 As stated above, CS reduces the N -

dimensional signal x to the M -dimensional 

measurement signal S . In Equation (2), the 

number of unknowns N is greater than the number of 

equations M , therefore, the direct solution of 

Equation (2) to reconstruct X cannot be the define 

solution. However, In Equation (3), y is of K-

sparsity, only containing the number of 

K nonzero coefficients, and K < M ≤ N , thus, y can 

be derived from solving the inverse problem of 

Equation (3) by the existing sparse decomposition 

algorithms, and then x can be reconstructed through 

Equation (1). 

The literature points out, in order to ensure 

the algorithm convergence,  in Equation (3) must 

satisfy the RIP (restricted isometric property) 

criterion, that is, for any vector u  of strict K-

sparsity,   satisfies 

2

2

1 1
u

u
 


   

 

 
.  (4) 

Where 0  . An equivalent criterion to RIP is that 

the measurement matrix   and the sparse matrix   

are irrelevant to each other.  

For the CS theory, its inverse process of 

reconstruction is to solve the following optimization 

issue based on the l0 norm 

min
0
, . .ly s t y s   .  (5) 

But the solution of l0 norm is a NP-hard (non-

deterministic polynomial) issue, so convert it to the 

solution of the following optimization issue based on 

the l1 norm 

 min
1
, . .ly s t y s   .  (6) 

The current commonly used methods for solving the 

issue above include MP (matching pursuit), OMP 

(orthogonal matching pursuit), CP (chaining pursuit), 

GP (gradient projection) and so on. 
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B. Wavelet Packet Analysis 

Given the orthogonal scale function ( )t  

and wavelet function ( )t  , the scale relationship 

between them is described as follow 

 

 ( ) 2 (2 )k

k Z

t h t k 


   

     (7) 

 ( ) 2 (2 )k

k Z

t g t k 


   

Where hk and gk are filter coefficients of the multi-

resolution analysis. 

With further extension of the two-scale 

equations above, the recursive relations are presented 

below 

 

2 ( ) 2 (2 )n k n

k Z

W t h W t k


   

    (8) 

2 1( ) 2 (2 )n k n

k Z

W t g W t k



   

When n = 0, W0(t) =  (t) , and W1(t) = (t). The 

function set {Wn(t)} , nZ defined as above is the 

wavelet packet determined by W0(t)= (t).Thus, the 

wavelet packet {Wn(t)}, nZ containing the scale 

function W0 (t) and the mother wavelet W1(t) is a 

function set of certain correlations. 

The idea of wavelet packet tree is similar to 

that of wavelet decomposition, but the wavelet packet 

transform provides a more sophisticated and flexible 

analysis method for the signal frequency band, which 

makes decompositions on all the smooth and detailed 

sub-bands level-by-level, without redundancies and 

omissions, consequently achieving better analyses of 

time frequency localization to the signals containing 

a large number of intermediate and high frequency 

information. In this way, wavelet packet analysis can 

be designed to find the optimal description of the 

original signal. The 2-D wavelet packet tree with 2-

level decomposition, in comparison with the wavelet 

tree, is shown in   Fig. 1. 

Image compression based on the wavelet 

packet tree must select a good basis function to 

effectively indicate the characteristics of the original 

image. To select an ideal wavelet packet basis, first 

define a cost function of the given sequence, and then 

find the basis that minimizes the cost function from 

all the wavelet packet bases. For a given sequence, 

the least cost means its most effective representation, 

and the corresponding basis is called the optimal 

basis of wavelet packet. This paper utilizes the 

Shannon entropy criterion to determine the optimal 

wavelet packet basis, and Shannon entropy is 

computed by the following formula 

 
2 2

( ) .log , . .log0 0.i i

i

H x x x s t         (9) 

 or 

( ) .log .i i

i

x P P          (10) 

Where
2 2

/i iP x x , and  nx is the expansion 

coefficient sequence of the signal based on an 

orthogonal wavelet packet.  

 

III.THEALGORITHM  IPLEMENTATION 

Sparsity or compressibility of the signal to be 

processed is the premise to apply CS. In general, the 

signal itself is not sparse, but its coefficients by a 

certain transformation can be considered sparse or 

compressible. The algorithm proposed in this paper 

first decomposes the original image with the wavelet 

packet to make it sparse, and then carries out the non-

adaptive measurement encoding on the corresponding 

wavelet packet coefficients on the basis of CS, to 

complete the image compression. The specific 

implementation steps of the algorithm are as follows: 

1) Select an appropriate wavelet function and set a 

required decomposition level, then execute the 

wavelet packet foil decomposition on the original 

image. 

2)  Determine the optimal basis of the wavelet packet 

in the light of the Shannon entropy criterion. 

3) As the main information and energy of the original 

image are concentrated in the low-frequency sub-

band by the wavelet packet transform, which plays a 

very important role in the image reconstruction, all 

the low-frequency coefficients are compressed 

losslessly in order to reduce the loss of the useful 

information. 

4) According to the theory of CS, select an 

appropriate random measurement matrix, and make 

measurement encoding on all the high-frequency 

coefficients in line with the optimal basis of the 

wavelet packet, and obtain the measured coefficients. 

5) Restore all the high-frequency coefficients with 

the method of OMP from the measured coefficients. 

6) Implement the wavelet packet inverse transform to 

all the restored low-frequency and high-frequency 

coefficients, and reconstruct the original image. 
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IV. THE ALGORITHM SIMULATION 

In accordance with the above steps, implement the 

algorithm simulation using MATLAB to four 

selected test images of much detailed information 

with the size of 256 X 256, as shown in Fig. 2. In the 

experiment, select the wavelet function 'sym8' of 

approximate symmetry to do the 2-level wavelet 

packet decomposition of the input image, and select 

the random Gaussian matrix obeying the (0, 1/N) 

distribution as the measurement matrix. As the low-

frequency sub-band by the wavelet packet 

decomposition is the approximation of the original 

image at different scales, which is not considered 

sparse, the algorithm only proceeds to the 

measurement encoding on all the high-frequency 

coefficients of the wavelet packet decomposition, so 

as to reduce the loss of the useful information. The 

relation curves between the number of measured 

coefficients and PSNR of the reconstructed image are 

shown in Fig. 3, which also illustrates the comparison 

of the algorithm proposed in this paper with the other 

two image compression algorithms both based on CS. 

In Fig. 3, 'algorithm l' executes measurement 

encoding on all the coefficients of wavelet transform 

together, and 'algorithm 2' implements measurement 

encoding only on the high-frequency coefficients of 

wavelet transform, and 'algorithm 3' represents the 

algorithm proposed in this paper. 

 

V. RESULTS 
 

 
 

Fig. 1. (a) Wavelet tree; (b) Wavelet packet tree with 

full decomposition. 

 

 

 
 

Fig. 2. Four original test images used to simulate the 

algorithms: 

(a) Lena: (b) Barbara: (c) Cameraman: (d) Pirate.  

 

 
 

Fig. 3. Comparison results of four test images with 

three algorithms: (a) comparison results of Lena; (b) 

comparison results of Barbara; (c) comparison results 

of Cameraman; (d) comparison results of Pirate. 
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VI. CONCLUSION 

As seen from the simulation results above-mentioned, 

the algorithm proposed in this paper is of simpleness, 

high efficiency, and easy implementation for image 

compression and its performance with the better 

reconstructed image quality is much superior to the 

other two algorithms in comparison. Moreover, the 

selections of measurement matrix and reconstruction 

algorithm in the compressed sensing theory, wavelet 

function and determining criterion on the optimal 

basis in the wavelet packet analysis, and so on, all 

affect the algorithm performance, and better 

selections can further improve the algorithm 

performance. 
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