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ABSTRACT: .

In this paper, we propose a novel least-mean-square @(N+1)=aw(N)+xe (N)X(n) (1)
(LMS) algorithm for filtering speech sounds in the

adaptive noise cancellation (ANC) problem. It is based

on the minimization of the squared Euclidean norm of s(n A d(n) e B

s(m)
the difference weight vector under a stability constraint ( b3 =
defined over the a posteriori estimation error. To this vin) 7 yin)
purpose, the Lagrangian methodology has been used in

order to propose a nonlinear adaptation rule which is vin) W)
derived from NLMS. The proposed method yields better B vo(n) /
Fig. 1. Adaptive noise canceller.

()

tracking ability in this context as shown in the
experiments which are carried out on the AURORA 2
and 3 speech databases. They provide an extensive
performance evaluation along with an exhaustive ) ] 4
comparison to standard LMS algorithms with almost the Where u is a step-size paramete€ (N) denotes the
same computational load, including the LMS and other complex conjugate of the error sigmén), and
recertly reported LMS algorithms such as the TV-LMS T,

and NLMS. This algorithm can efficiently reduce the X(M)=(X(n),... x(n—L+1))"is the data vector

amount of missadjustment with respect to the optimum ContainingL samp|es of the reference S|gV§(n) .

response than the previous LMS. Many ANCs [1}4] have been proposed in the past
) | years using modified LMS algorithms in order to
Index Terms— Adaptive noise canceller, least-mean- gimyitaneously improve the tracking ability and speed of
sqguare _(LMS) algorithm, speech enhancement, stability convergence. Bershad has studied the performance of the
constraint, normalized LMS (NLMS) algorithm with an adaptive step
size in showing advantages in convergence time and steady
I. INTRODUCTION state. Later, Douglas and Meng [4] have proposed the
THE widely used least-mean-square (LMS) algorithnﬁ’ptim_“m nonlinearity for any input probability de_n_sity of
has been successfully applied to many filtering application§!® independent input data samples, obtaining the
including signal modeling, equalization, control, echdormalized data nonlinearity adaptation (NDN-LMS).
cancellation, biomedicine, or beam forming [1]. The typicaftthough the latter algorithm is designed to improve the
noise cancellation scheme is shown in Fig. 1. Two distafady state performance, its derivation did not consider the
microphones are needed for such application to capture HBIC In case of a strong target signal in the primary input.
nature of the noise and the speech sound simultaneoudg/eenberg’s modified-LMS (M-LMS) [2] extended the
The correlation between the additive noise that corrupts that€r @pproach to the case of the ANC with the nonlinearity
clean speech (primary signal) and the random noise in tABplied to the data vector and the target signal tself
reference input (adaptive filter input) is necessary tgbtaining substantlalllmprovements in _the performance o_f
adaptively cancel the noise of the primary signal. Thi?® canceller. The disadvantage of this method is that it
adjustable weights are typically determined by the LM&Quires a priori information about_ the processes which is
algorithm [1] because of its simplicity, ease ofgenerally unknown. Recently, an mte_restlng_approach_has
implementation and low computational complexity. Th&€€n proposed based on a nonlinearity applied exclusively

weight update equation for the adaptive noise cancell}the data vector [3]. _ L
(ANC) is This paper shows a novel adaptation for filtering

speech signals in discontinuous speech transmission (DTX)
systems, which are characterized by sudden changes of the
signal statistics. The method is derived assuming stability in

the sequence of a posteriori errors instead of the more
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restrictive hypothesis used in previous approaches i.guhere o X(n)=x(n)—X(n—-1) is the difference

enforcing it to vanish. between two consecutive input vectors. Hence, the step of

Il. CS-LMS ALGORITHM the algorithm is

The NLMS algorithm may be viewed as the solution to a

constrained optimization problem [6]. The problem 0f5w(n+1) = 1/1*§x(n) = w(n+1) = w(n) +E/1*§x(n).
interest may be stated as follows: given the tap-input vector 2 2 (6)

X(n) and the desired respor@d@n), determine the tap

weight vector @(N+1) so as to minimize the squaredFinally, after multiplying both sides of (5) by X" (n) |
Euclidean norm of the change the Lagrange multiplier can be expressed as
oow(N+1)=w(n+1)—w(n) in the tap-weight vector

@(n+1) with respect to its old value(n) , subject to the ;29 x"(swn+1) 25" (n)-5€" (n))

2 2
constrainko(N+1)" x(N) =d(n), where H denotes the H5 X(”)H H5 X(”)H @)
Hermitian transpose. This constraint means that dhe
posteriori error sequence VamSheSwhere56[n] (n) _dnl (n) - gl (n—1) is the difference in

k-+1] — _ H - =
[ (n) = d(n) — w(k +1)" x(n) = 0, fork =n] - the a priori error sequence [denoted &¥(N) for short]

In order to solve this optimization problem, the method Osfmce RISLGRIC" on the Jeft-hand side of (7) Is equal to

Lagrange multipliers is used with the Lagrangian function X" (Nw(n+1) -x" (n-w(n+1) -

x" (Nw(n) + x" (n=2)w(n). Therefore, applying the
equilibrium constraint on the right-hand side of (7)
(6 €™ (n) =0) leads to

L(o(n+1) =[| So(n+1) |F + Re[L €™ (n)] (2)

Whered is the Lagrange multiplier, thus obtaining the well

known adaptation rule in (1) with the normalized step size 25 e (n)
A = (8)
%) [[2
Finally, the minimum of the Lagrangian function satisfies

restrictive in real applications; thus, if we relax it, anothefhe following constrained stability update condition (CS-
interesting solution can be derived. Consider the constralngms)

optimization problem that provides the following cost
function:

given by,u:,u”X(n)Hz. The latter constraint is overly

B S x(nN)se (n)
o(n+1) = w(n) + 1) [12 ()]

L(w(n+1) =[&nmn+1)|° + Re[ & (n)]
®) The weight adaptation rule can be made more robust by

introducing a small positive constantinto the denominator

Where s&™M (n) = ™ (n) —e™ (n—1). This to prevent numerical instabilities in case of a vanishingly

equilibrium constraint ensures stability in the sequenc@ ofsmall squared nornj] oX(N) ||> and by multiplying the
posteriori errors, i.e., the optimal solutiw?pt(n+l) is  weight increment by a constant step gizeto control the
the one that renders the sequence of errors as smoottspeed of the adaptation. Note that the equilibrium condition

possible. Taking the partial derivative of (3) with respect tQ ¢, ces the convergence of the algorifhfhox(n) ||2¢ 0.
H . .
the vectorw" (N+1) and setting it equal to zero leads toseyeral learning algorithms, where the learning relies on the

oL(w(n+1)) oo™ (N+1)dw(n+1) ) concurrent_change of processing var.iables, _ have been
m = Hnid) HrD proposed in the past for decorrelation, blind source
ow" (n+1) ow ow separation, or deconvolution applications [5]. Stochastic

* 0 [n+] Al information gradient (SIG) algorithms [5] maximize (or
x Re[/l (e[ (I’l) e (n 1))] (4)  minimize) the Shannon’s entropy of the sequence of errors
using an estimator based on an instantaneous value of the
Since ™! (k) = d(k) - wH (n+1)x(K) for k=n,n1 ard probability density function (pdf) and Parzen windowing. In
. this way, the CS-LMS algorithm can be considered as a
Re[z] =1/2(z+ z ) , then generalization of the single sample-based SIG algorithm
using variablé&ernel density estimators.

oL(w(n+1))

1.
S (1) =&N(n+1)—§/1 Xx(n)=0

(5)
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Ill. THEORETICAL REMARKS ON THE CS- Where S[.](n) =[.]1(N) —[.](N—1) andv(n) denotes the

LMS ADAPTATION L . . . .
Once the CS-LMS method has been derived, %0|se in the primary signatl(n) (Vlm Fig '1)'” v(n)

comparison is established with the NLMS algorithm. Thigs assumed to be generated by the multiple regression

section shows that, under some conditions: 1) CS-LMS agpghqel: v(n) = a)oH X(n) +¢&,(n), the weight-error vector
NLMS algorithms converge to the optimal Wiener

solutionw, , and 2) for any fixed step size, the proposed 's expressed as
o » ang £y ot any P SIze, The Proposed . 1 1) = (1 — px(n)ex(n)" e (n)
CSLMS exhibits improvements in excess minimum .
squared error (EMSE) and misadjustment ([@) when — pox(n)(oe,(n) +os(n)) . (11)

compared to the NLMS algorithm. By invoking the direct-averaging method [6], the equation

) above leads to
A. Convergence Analysis of Q34S

Theorem 1 (Convergence Equivalence): d€n) be the tap £o(N+1) = (1 — 4 Ry ) £,(N) — uk(n)s & (n) (12)

inputs to a transversal filter and(n) the correspondin
P () i g Wheredg,(n) = %&,(N) +5(n), and the mean-squared

g th . o ol error produced by the filter is given by
comparing the estlmayé(n) provided by the filter with the Jn)=J, + E[ls(n) |2]+ E[g: (n)x(n)x(n)“go(n)] (13)
desired responsel(n), that ise(n) =d(n)—y(n). On

the other hand, if the desired sigt{h) is generated by \hereJ, = E[|e0(n) |2] and J

tap weights. The estimation erra®(n) is obtained by

SL+E[snp] . The

min

the mukl|tiple linear  regression  model,  i.e.gtochastic evolution on the natural modes can be studied by
d(n) =w; x(n)+e,(n) , wheree, () is an uncorrelated transforming (12) into
white-noise process that is statistically independent of the V(N+1) = (I — uA)v(n) —¢(N) (14)

input vector X(N) , then the CS-LMS adaptation converges
and by applying the unitary similarity transformatif@} to

to the Wiener solutiow, (N) under stationary environment. _ ‘ H ;
the correlation matrixR;, , where A=Q"R; Q is a

Proof. This theorem is proven by showing thafiagonal- matrix consisting of the eigenvaldes of
- ) o :
w, =argmin, Ef| &(n)| e el R, ,Q. is a unitary matrix whose columns constitute an
. 2/ . . . 5 E
to argmin , E[| &(n)[*=w,.. This condition is satisfied orihogonal set of eigenvectors and the stochastic force

since the cross-correlation vector between the concurr€cior is defined asp(n) :yQHéx(n)ée;(n)  This
change in the desired responsegd) and input-

vectors(S X), I, = E[%dd ] = Ry, where

Ry = E[sxo%x" ] denotes auto-correlation matokd X .

vector has the following properties.

+ The mean of the stochastic force vector ¢(N) is zero:

El¢(n)]=0.
B. Learning Curves of the CS-LMS Algorithm: EMSE and The correlation matrix of the stochastic force vector is a
Misadjustment diagonal matrix: E[#(n)¢" (N)] = 1£°J A, where

It is common in practice to use ensemble—averaglg :Z(E[leo(n)2 1+ Ell S(n)2 |]_Re{rs(1)})’

learning curves to study the statistical performance @fygr (1) = E[s (n+1)s(n)] .
adaptive filters. The derivation of these curves is slightl 2
different for the ANC problem due to the presence of th

desired clean signas(n) . Using the definition of the

he first two moments of the natural modes can be obtained
by using these properties as in [6], which allow one to show

_ _ the evolution ofJ(N) with time stepn . The third term of
weight-error vector&(N) =W, —W(n) and (9) with the (13), in light of the direct-averaging method, is equal to
step size definedisy, we may express the evolution of j (n) = E[goH (n)x(n) X(n)H £o(M]

ex
g(n) as

e(nN+1) = &(n) — udx(n) ~ E[&!! (N)Re, ()] = tr{ RE[,(n)& (N)]}
X (6 S(n) +dv(n) — (w, —&(n)" Sx(n)’ 1< -
(10) = Eézk Ell vi (N 7]

+ E[rt{v"' Q" Re{RM}IQV}]] (15
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where R() = E[x(n+1)x" (n)]. Assuming that the \I\;Iegn: 0 Lol
input signal is weakly correlate§R(L) ~0) , the second lnziatri:}nscgéd:. 10
term can be bounded in the last equality of (15) with the first
term (natural evolution), i.e., Filter Specifications used:
E[tr{v" Q" Re{RM}IQV] < (F)ilr?rr'.l'ége: FIR
@/2) > AE[l Vi (n)]?] . and then StruitLlre: Direct form-I

Window: Rectangular
No. Of Iterations: 100 to 1000

L
I (M =D A, El[l vie (M |7] V Results
k=1 The signals above described in simulation setup are
L 14 taken as the input to the adaptive filter and the filter
= Zﬂk[— + @A- ,u;tk)zn coefficients are updated using the constrained stability LMS
= 2— uA, algorithm and standard LMS algorithm. We compare the

performance characteristics of both algorithms finally.

X[| Vi Q) —ﬁn (16)

where V, (n) denotes thek th-component of natural mode 05

ORIGINALSPEECH SIGNAL

v(n) [6]. If the exponential factor is neglected with WWMWWWM”““ s
increasing n 055 0% 1 18 '

L
1J 1
Jo () < ——— |==u Jtr{R,} 17) SIGNAL+NOISE
() ;%(2—,&&( 2/” {Rs} ! -

the reduction in J,() is achieved whenever

1
‘Jex(oo) ~ E:u J tr{ R&x} ~ U J tr{ R}

o

2 25

w10t

25

X

<945 () =2 3R} > Refr, @)

05 1 1 1 1
0 05 1 15 2 25
3 10t
220, (18) X
i.e., the desired signal is strongly correlated. It also follows Fig 1: simulated result of noise cancellation
from classical analysis [6] that 1) the high value af In speech using CS-LMS algorithm

balances the trade-off betweed, () and the average

time constar since No. of CS LMS LMS1 TV LMS
L iterations | algorithm | (u1=0.05) | u=0.02
T utr{R,} L) 100 0.0367 | 0.0428 0.0326
Where L is the filter length, and 2) a necessary condition for 200 0.0183 0.0213 0.0176
stability is thaD < < 2/ 4, , for allk . 300 0.0121 0.0142 0.0126
400 0.0091 0.0106 0.0100
IV simulation setup 500 0.0073 | 0.0085 0.0084
The desired speech and noise statistical parameters as 600 0.0061 0.0071 0.0073
follows: 700 0.0052 0.0061 0.0064
Desired SPeeChiFre Leney: 4000 800 0.0045 | 0.0053 | 0.0058
San‘jp”ngyﬁequenc)'ﬂ 8000Hz 900 0.0040 | 0.0047 0.0053
1000 0.0036 0.0042 0.0049
Noise Parameters: Table 1: Indicates MSE Comparison after Performing
Amplitude: 0.15 various no of lterations in Standard LMS, CS-LMS,
Type: normal distribution noise: TV -LMS
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Time Varying LMS algorithms. As shown in the figure 2.
we can conclude that CS-LMS algorithm is producing
optimized responsewhile producing very small MSE’s
compared with standardMS and time varying LMS
algorithms.

We can efficiently use this CS-LMS algorithm in
Sub-Band Adaptive filtering Applications in order to
produce optimized response. So undoubtedly this algorithr
has appreciable significance in speech processing. v

3 L . L . 1
400 500 600 700 800 900 1000

Fig 2: Learning curve of various algorithms
For noise cancellation in same speech signal

VI CONCLUSION AND FUTURE SCOPE
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